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Abstract

This report presents SOLR Annographix: a software suite for indexing and querying
annotation graphs generated by NLP pipelines. E�ectiveness and e�ciency of the
software was evaluated in a document retrieval task for the purpose of factoid question
answering (QA). To this end, we employed the AQUAINT text collection and TREC
QA topics. The actual queries were generated from answer-bearing sentences using
an approach of Bilotti [3]. Queries that included linguistically-motivated constraints
outperformed unstructured queries: The di�erences were substantial and statistically
signi�cant. In addition, we experimented with queries generated from randomly selected
corpus sentences: It was possible to retrieve original documents in at least 90% of cases,
while spending less than 0.1 sec per query (on average). These results are encouraging.
Yet, the system needs to be improved by (1) implementing annotation compression,
(2) extending the query language, (3) implementing better graph matching algorithms
that would be less dependent on an early termination heuristic.

1 Introduction and Motivation

A question answering (QA) system aims to satisfy a precise information need expressed in
a natural language. For example, the user can type a factoid query: �What is the capital of
the United States�, for which there exist a unique and concise answer. Modern QA systems
are extractive in nature and have limited capabilities of synthesizing answers from several
sources. Thus, answering a question entails �nding a segment of text: a document, a passage,
or a sentence, that contains an exact answer to the given question. This segment of text
is often called answer-bearing. In particular, one of the most advanced QA systems IBM
Watson heavily relies on extractive retrieval-base approaches [5].

In a classic QA pipeline, the question is analyzed and subsequently represented by a set
of keywords and/or phrases that are used to retrieve answer-bearing passages [18]. After-
wards, downstream components can carry out a deeper textual analysis of top-k (most highly
ranked) passages and extract potential answers. This process can use sophisticated natural-
language processing (NLP) to verify linguistically-motivated constraints identi�ed during
the question-parsing stage. In the question �What is the capital of the United States�, the
answer is a city, so that we can ignore all the sentences that do not contain city names.

Quite often, the retrieval phase in a QA system relies on bag-of-words model. However,
�... there is a fundamental disconnect between the capabilities of the bag-of-words retrieval
model and the retrieval needs of the QA system� [3]. In that, if linguistic constraints are
not used during retrieval, good answer-bearing passages can be outranked by passages that
better match question keywords.

For example, the question �When did Stribling lose to Carnera by a foul?� would be
hard to answer, because in one match Carnera defeated Stribling, but in a rematch Stribling
took over. In that, both matches were won by a foul (perhaps, due to a conspiracy). In
the sentence �Carnera defeated Stribling�, Carnera is an agent and Stribling is a patient, but
in the sentence �Carnera lost to Stribling by a foul� Carnera is a patient. To distinguish
between the two outcomes, one needs to determine thematic roles at index time (the process
known as semantic role labeling), and take them into account during retrieval.
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Annotations are a common formalism for encoding linguistic features such as thematic
roles or parts of speech (POS) tags. Electronic annotations model real-life annotation of the
text, in which the user highlights certain text spans with a marker. One common extension
of this formalism introduces parent-child annotation links, which are necessary to support
hierarchical annotations such as dependency trees.

Two popular generic approaches to extend bag-of-words models with structured-retrieval
capabilities are: storing an annotation graph in a fast forward index and creating a parallel
index [25].

In the former approach, the forward index is used to verify the constraints as a post-
processing step of passage retrieval. More speci�cally, we �rst retrieve top-k documents using
a bag-of-words model. Next, we obtain their annotation graphs by querying the forward
index. However, due to a potential disconnect between bag-of-word queries and answer-
bearing sentences, answer-bearing documents may not appear among top-k documents.

In a simple parallel index, we allow several terms to share the same position. In this
fashion, we can specify term properties such as POS tags (e.g., NN) or named entity types
(e.g., PERSON). Under the hood, this is often implemented by keeping separate posting lists
for terms and term properties. At query time, their positions are matched by a fast alignment
operator [25].

This simple model has two major drawbacks. First, this approach can be space-ine�cient
for annotations that span multiple tokens, because each term covered by an annotation is
mirrored by some entry in a parallel posting list. It is even more wasteful, if annotations store
additional attributes such as IDs (identi�ers) of parent annotations, because these attributes
will be stored multiple times: Once for each token covered by an annotation. Second, this
model relies on the assumption that (1) all the annotations start/end on easily-identi�able
token boundaries, (2) all the annotating tools are using the same tokenization algorithm.
These assumptions are problematic even in English, because tokenizers di�er in the way they
treat possessive markers, hyphens, and punctuation characters. In the case of agglutinative
and other synthetic languages, it also makes sense to annotate word morphemes rather than
complete words.

The implementation of the parallel index in the Indri search engine1 is free from these
issues. In Indri, there is only one entry per annotation whose start/end positions are speci�ed
via character o�sets rather than token positions. In addition, each annotation includes its
own ID as well as an optional ID of the parent. Indri has a powerful query language that
supports both a containment and a parent-child relational operator. Indri delivers state-of-
the-art retrieval performance for both bag-of-words and structured queries.

An open-source engine Apache SOLR (built on top of Apache Lucene)2 is a rapidly
developing software package, which enjoys support from a large open-source community.
However, it lacks structured-retrieval capabilities similar to those of Indri. This motivated
us to create a SOLR query plugin to �ll in the gap. The current query plugin permits
specifying a maximum span length (or, alternatively, a name of the covering annotation
representing, e.g., a paragraph) as well the structure of a matching annotation graph.

1http://www.lemurproject.org/indri/
2http://lucene.apache.org/solr/
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This plugin is complemented by an UIMA3 analysis engine that consumes the output of
an NLP pipeline and generates intermediate �les in formats that can be indexed by either
SOLR or Indri. In this report, we describe the architecture of the implemented query plugin,
discuss the algorithmic issues, and present results of an experimental evaluation.

2 Related Work

The idea that a syntactic structure of a question should be similar to a syntactic structure of
an answer has been pursued for several decades. An early example is Protosynthex QA system
implemented by System Development Corporation [23]. Protosynthex relied on a human-
guided dependency parsing. Among recent work of interest are papers by Cui et al. [7] and by
Shen et al. [22], who showed that re-ranking using dependency information and semantical
role labels, respectively, can substantially improve performance of a factoid QA system. Both
papers rely on a bag-of-words retrieval model and use additional syntactic information only
during a post-retrieval phase.

In contrast, Bilotti et al. [4] demonstrated e�ectiveness of a structured retrieval ap-
proach, where linguistically-motivated constraints�de�ned by predicted thematic roles�were
used directly during retrieval. Bilotti et al. employed structured retrieval capabilities of the
search engine Indri. A similar result was obtained by Miyao et al. [17], who also claimed to
have invented an e�cient algorithm for structured retrieval (and referenced an unpublished
report).

Unfortunately, neither the algorithm by Miyao et al. nor algorithms underlying struc-
tured retrieval in Indri appear to be described in su�cient detail. In the context of searching
XML data, however, there is a large body of literature concerned with the e�ciency of
structured retrieval [9].

There are several search engines that have structured retrieval capabilities, including
Indri. However, there appear to be no open-source implementation of a SOLR or Lucene
extension that provides functionality similarity to that of Indri. Siren is a structured retrieval
component built on top of Lucene [8].4 However, it supports only the nested model, which
is too restrictive for most NLP applications.

3 Architecture

3.1 Indexing Model

In SOLR, the minimum indexable unit is a document. A document has an identi�er and
several sections called �elds. Each �eld has its own set of posting lists for terms appearing in
this �eld. Two �elds are employed by our query plugin: one �eld is used to keep the original
text of a source document, and another �eld is used to store NLP annotations. The text
�eld is con�gured to store both term positions and term o�sets. The latter are required for
e�cient alignment of annotations and terms during retrieval.

3https://uima.apache.org/
4https://github.com/rdelbru/SIREn
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A capital of the United States
DT NN IN DT NNP NNP

0�1 2�9 10�12 13�16 17�23 24�30︸ ︷︷ ︸
LOC

Table 1: Sample annotations (POS tags and the named entity) for the phrase �A capital of
the United States".

Our implementation is analogous to the parallel index of the Indri search engine [3]. The
annotation �eld stores annotation labels augmented with a tuple:

(startOff, endOff, id, parentId),

where startOff is a zero-based index of the �rst character covered by the annotation, endOff
is a zero-based index of the character following the last character covered by the annotation,
id is an annotation ID (that needs to be unique within a document), and parentId is an
ID of the parent annotation. If no parent exists, parentId is set to zero.

All tuples are sorted �rst by the type of the annotation (dependencies, POS tags, etc),
next in the order of non-decreasing start o�set. Elements of the same type with equal start
o�sets are sorted in the order of non-decreasing end o�set.

Consider an example where the phrase �A capital of the United States" is annotated using
a POS tagger and a named entity recognizer. The result is shown in Table 1, where text
tokens occupy the �rst row, POS tags are given in the second row, the third row indicates
start/end o�sets of tokens and corresponding POS tags, while the last row shows the named
entity annotation spanning two terms.

Assuming that annotation IDs are assigned left-to-right, the �rst annotation DT has the
ID one and the named entity has the largest ID, the annotation index will contain the
following tuples:

� (0, 1, 1, 0) & (13, 16, 4, 0) for the tag DT;

� (2, 9, 2, 0) for the tag NN;

� (10, 12, 3, 0) for the tag IN;

� (17, 23, 5, 0) & (24, 30, 6, 0) for the tag NNP;

� (17, 30, 7, 0) for the named entity LOC.

In SOLR, we store annotation tuples in the form of a payload, which is a chunk of data
associated with the respective annotation posting. Tuples are stored in the uncompressed
format and, therefore, occupy 16 bytes in the payload. In addition to this, each annotation is
stored together with a compressed document ID and a compressed position of the annotation
inside the annotation �eld. The latter positions are never used, but we have to store them,
because SOLR payloads are enabled only for �elds with positional information. In practice
(see Table 4), however, this additional overhead is small compared to the size of uncompressed
tuples.
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POS_DT|0,1,1,0 POS_NN|2,9,2,0 POS_IN|10,12,3,0 POS_DT|13,16,4,0
POS_NNP|17,23,5,0
POS_NNP|24,30,6,0 NE_LOC|17,30,7,0

Table 2: A sample text that can be used to index POS tags and named entities for the phrase
�A capital of the United States". The corresponding annotations are shown in Table 1.

To index documents in a SOLR index, one can submit documents in a special XML
format via HTTP. In this format, we specify a text value for every document �eld. Payload
data can be passed to SOLR by modifying text values for �elds with con�gured payloads.
Con�guration consists in specifying a payload delimiter in the SOLR schema �le as well
as the name of the payload encoder class (inherited from AbstractEncoder). The payload
encoder reads a textual representation of payload data and converts it to a binary form.

More speci�cally, one needs to append a payload delimiter followed by a payload string
to every term in the �eld. Let the payload delimiter be the pipe-symbol and assume that the
payload encoder uses the format in which an annotation tuple is speci�ed via four comma-
separated numbers. These numbers represent the start o�set, the end o�set, the annotation
ID, and the parent annotation ID, respectively.

Then, to index payload data from Table 1, one should generate the text value shown in
Table 2. Note that in this example the label of each �eld is prepended with a pre�x: POS_
for POS tags and NE_ for the named entity. This is necessary to ensure that annotation
terms belonging to di�erent types are always di�erent.

3.2 Retrieval Model

SOLR provides several entry points that can be used to extend functionality. In particular,
it is possible to reimplement a search handler and a query parser, which is created by a
custom query plugin. Overriding the search handler provides the most �exibility, because it
permits one to implement an arbitrarily complex retrieval mechanism.

A simpler approach�chosen for this work�is to reimplement a query parser. Beside sim-
plicity of implementation, it permits including our custom structured queries as a part of a
standard SOLR query. In that, the results obtained from di�erent parsers can be combined
using Boolean operators AND and OR.

In this approach, each annotation subgraph is treated as a meta-term. The retrieval
plugin computes the number of meta-term matches and passes this information to a SOLR
similarity function. The latter aggregates global statistics of terms and annotations�e.g., by
summing up inverted document frequency (IDF) values�and combines it with the number of
in-document occurrences to compute the score of a document.

The main limitation imposed by the SOLR API is that the query plugin can only return
a list of document IDs accompanied by document scores. Thus, it is not possible to return
scored text extents in a way it is done by, e.g., Indri (without reimplementing the complete
search handler).
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1 _query_:"{!annographix ver=3
2 boost=3.2 span=1024 max_iter=200000
3 text_�eld=Text4Annotation annot_�eld=Annotation}
4 @srlp2:SRL_V ∼0:scored #covers(srlp2,0)
5 @srlp3:SRL_A1 ∼1:100 ∼2:points #covers(srlp3,1,2)
6 @srlp4:SRL_A0 ∼3:Wilt ∼4:Chamberlain #covers(srlp4,3,4)
7 #parent(srlp2,srlp3, srlp4)"

Table 3: A sample structured query for the question �What year did Wilt Chamberlain score
100 points?" (TREC QA 2002 topic 1402). Line numbers are given only for presentation
purposes.

3.3 Query Language for Structured Retrieval

A structured query can be included into another, e.g., standard, SOLR query. To this end,
the structured query should have the following format:

_query_:"{!<plugin name> <plugin paramters>}
<structured query> "

In words, it should have a pre�x _query_:" followed by (1) query parameters surrounded
by curly brackets and (2) by a query text concluded with the double quote.

Table 3 shows a sample structured query created for the question �What year did Wilt
Chamberlain score 100 points?". It is designed to �nd all sentences with the verb score

whose �rst argument (an agent) contains the words Wilt and Chamberlain while the second
argument (patient or theme) contains the words 100 and points.

Line one in Table 3 provides the name of the plugin (starting with the exclamation mark)
and an optional plugin version. The second line speci�es the maximum length of a covering
span (1024 characters), a boost value (an optional multiplier for document scores), and the
maximum number of brute-force iterations that we carry out before giving up on checking
constraints for one span. Instead of the explicitly specifying the size for the covering span,
one can de�ne the size implicitly, namely, by specifying the label of the covering annotation
(parameter cover_annot). The maximum number of iterations is a parameter/threshold for
the early termination heuristic described in Section 3.4.

Line two in Table 3 provides the name of the text �eld and the name of the corresponding
�eld that stores text �eld's annotations. Lines four through seven represent the structured
query itself. It has elements of three types: terms, annotations, and operators starting with
the hash symbol. Terms and annotations de�ne the nodes of an annotation graphs, while
operators de�ne graph edges.

A term is pre�xed by the tilde, which is followed by an optional identi�er, the colon, and,
�nally, by the term itself. The annotation has a similar structure. Yet, it is pre�xed by the
at-sign (which is followed by an optional identi�er, the colon, and the annotation label).
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Optional text and annotation identi�ers are used to reference these query elements in
operators. More speci�cally, the operator #parent de�nes a parent for one or more query
element. We here use a functional notation to denote the parent identi�er, followed by
identi�ers of one or more child elements. Identi�ers are comma-separated and no spaces are
currently allowed.

The operator #covers enforces the containment relationship and has the same syntax
as the #parent operator. It tells the query plugin that the element represented by the �rst
argument should cover elements represented by the second, third, etc. arguments.

For example, line 4 in Table 3 tells the query plugin that the term scored is contained
within an annotation labeled SRL_V. Similarly, line 5 speci�es that terms 100 and points are
covered by the annotation SRL_A1; line 6 speci�es that the annotation SRL_A0 covers terms
Wilt and Chamberlain; and line 7 requires annotations SRL_A0 and SRL_A1 to be children
of the annotation SRL_V.

3.4 Algorithmic Details

As mentioned in Section 3.2, we opted for reimplementing a custom plugin that creates an in-
stance of a custom query parser. In this approach, the query parser is responsible for creating
instances of a weighting class, which, in turn, creates instances of a scorer class. These classes
extend abstract classes Weight and Scorer from the package org.apache.lucene.search.

The scorer class is main workhorse whose instances �nd matching documents and compute
a number matching textual extents inside these documents. SOLR employs a document-at-
a-time evaluation strategy and the scorer class implements several functions to support this
evaluation mode.

Two key functions are:

� advance(docId) � This function �nds the �rst document (with ID at least as large as
the function argument) containing all query terms and annotations. It moves posting
pointers to a position where these pointers can be used to read positional information
and payload data.

� computeFreq() � given that posting pointers are positioned at a document containing
all query terms and annotations, compute the number of spans inside the document
that match the query annotation graph.

To �nd a document containing all query terms and annotations, we use a classic �leap-
frogging� algorithm similar to the algorithm already employed by the exact SOLR phrase
scorer. The postings are �rst sorted in the order of increasing processing cost, which is
typically estimated as a posting size (or a number of unique documents containing the
term). Then, we iterate over the list with the smallest cost and advance pointers of more
expensive postings to match the document of the �rst, i.e., the cheapest posting.5

If the advancement operation is e�ciently implemented, which is claimed to be the case
for SOLR API, this procedure e�ectively utilizes posting lists size di�erential. In a real life

5One possible optimization is to advance the pointer for the cheapest posting towards the largest previ-
ously seen document rather than always moving it by one position. However this optimization did not result
in substantial time savings in our software.
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scenario, this leap-frogging approach is one of the most fastest intersection methods, which,
among others, outperforms the classic mergesort-like intersection algorithm [1, 12].

After �nding a document containing all query terms and annotations, we read term o�sets
and annotations payloads, store them in-memory arrays (note that annotation payloads are
extracted using a custom payload decoder) and invoke the function computeFreq. The latter
creates a span iterator to explore all segments of texts that may match the query annotation
sub-graph.

The implementation of the span iterator is trivial, if the span is de�ned by a covering
annotation. In this case, we merely loop over all annotation elements already stored in the
corresponding array. To �nd all segments containing given terms in a window of limited size,
we use a well-known plane-sweep algorithm [20] implemented using a priority queue.

The spans are explored in the order of non-decreasing start o�sets. For each span, we align
query terms and annotations against this span. More speci�cally, for every query element
(i.e., a term or annotation) we �nd the �rst and the last index inside the corresponding
memory array such that the start o�set of the query element is inside the span. Alignment
relies on an exponential search [2], also known as galloping.

For each term and annotation, these indices de�ne a subset of query elements that are
potentially fully covered by the span. We exhaustively consider all combinations of terms
and annotations from these sets and checks that they (1) all �t into the span and (2) do not
violate parent-child or containment constraints expressed by the query.

Because we do not need to compute the number of matches inside the span�but rather
verify if a match exists or not�we �nish checking the current span, and move to another span
right after the �rst match is found. In that, we also increment a frequency counter.

To make this brute-force veri�cation feasible, several heuristics are used. First, we order
terms/annotations in the order of decreasing number of query elements connected to a given
term/annotation through the annotation graph. Ties are resolved by placing less frequent
elements before more frequent ones. To compute the number of connected elements, we
consider the query graph to be undirected (both the #cover and #parent operators are seen
as de�ning undirected edges).

Second, if the query graph is not fully connected, we evaluate each disjoint component
separately. In that, components are checked in the order of decreasing size. If there is a tie,
the component having the least frequent query element is checked �rst. The idea behind
these heuristics is that, if the combination of query elements is incorrect, graph constraints
are more likely to be violated for well-connected rare query elements.

These two heuristics were su�cient to answer simple queries�such as the query shown in
Table 3�in the order of 10 millisecond for the AQUAINT collection. In particular, less than
50 milliseconds (on average) was needed to execute queries generated from answer-bearing
sentences (see Section 4.3.2). Yet, the query plugin was way too slow on complicated queries
specifying the (almost) complete annotation graph of a sentence.

For this reason, we introduced an early termination heuristics by putting a limit on the
maximum number of brute-force iterations allowed in a single span. Whenever this threshold
was reached, we terminated the check of the current span and proceeded to another one.
This threshold was speci�ed as the query plugin parameter max_iter. The e�ect of using
this heuristic is analyzed in Section 4.3.3.
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4 Experiments

4.1 Data Sets

We used the AQUAINT data set [10]. This data set contains 1,033,162 English news articles
(roughly 375 million words; 3GB of data) from three news sources: Associated Press (1998�
2000), New York Times (1998�2000), Xinhua News Agency (1996�2000).

To evaluate performance, we created two types of structured queries. Queries of the �rst
type were used to evaluate e�ectiveness of structured retrieval queries for document retrieval
in a QA system. The methodology was similar to that of Bilotti [3] in that these queries
were created from answer-bearing sentences.

Answer-bearing sentences were �rst annotated using the semantic role labeler SENNA.
Then, the annotation graph was pruned to contain only terms from the original questions
(terms were considered identical if they had identical lemmas according to the Stanford
CoreNLP lemmatizer). This pruning procedure will be referred to as a projection of answer-
bearing sentences to original queries. The remaining sub-graph was converted into a query
in a straightforward fashion, using operators that specify parent-child and containment re-
lationship.

Similar to Bilotti [3], we attempted to enhance queries with answer type placeholders. To
this end, we predicted the question answer-type using the question-analysis module of the
Open Ephyra [21]. If the type of the answer was a person, an organization, or a location, we
added to the query annotations @:NE_PER, @:NE_ORG, or @:NE_LOC. This instructed our plugin
to return only those text segments that contained a named entity matching the expected
answer type. This substantially (by more than 20%) degraded retrieval performance and we,
therefore, did not use answer-type placeholders in the �nal evaluations.

Unfortunately, the answer-bearing sentences collected by Bilotti [3] were lost and, hence,
we needed to recreate them. Note that the set of answer-bearing sentences was collected
prior before experiments were carried out. Once created, it was never modi�ed.

Similar to the approach of Bilotti, we retrieved potentially answer-bearing documents
using document-level relevance judgements speci�cally created for document retrieval task
(in a QA system). Then, we used patterns provided by TREC organizers to identify sentences
containing an answer text (sentence boundaries were detected using Stanford CoreNLP).

This procedure generated a lot of false positives, because many of the sentences con-
tained the answer text by chance (e.g., a name of the city), without actually answering the
question. In addition, some sentences answered the question only partially and it was not
possible to derive the answer without consulting additional sources or without making ad-
ditional assumptions. We used Bilotti's guidelins [3] to cull out false positives as well as all
insu�ciently speci�c and/or supportive sentences. Additionally we removed a few duplicate
sentences that appeared in more than one document.

Document-level relevance judgments were taken from two sources: the "MIT 109" test
set and TREC QA 2005 document ranking task containing 109 and 50 factoid questions,
respectively. In the case of "MIT 109", document-level relevance judgments were created
by substantially expanding the set of relevance judgements of TREC 2002 QA task [14].
Because of this expansion, the average number of known relevant documents per question
increased from 6 to 18. In the case of TREC QA 2005 task, there are 50 questions with
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about 31 relevant document per question on average.
However, each question in TREC QA 2005 task is a part of a longer series of questions,

where questions may use a pronoun (or other referential expressions) to include answers or
noun phrases from the preceding questions and/or a series description. Systems partici-
pating in TREC QA 2005 document retrieval task were supposed to resolve all references
automatically. We, however, simpli�ed the task and resolved references manually. For ex-
ample, the original question 71.4 �Where is this company based?" references the company
name that is an answer to question 71.3 �Who manufactures the F16?". Hence, question
71.4 was manually replaced with �Where is Lockheed Martin based?".

Overall we could �nd 1164 answer-bearing sentences: 630 for the "MIT 109" data set and
534 for the TREC QA 2005 document ranking set (For the "MIT 109" data set Bilotti [3] was
able to �nd 619 answer-bearing sentences). These sentences corresponded to 121 question,
i.e., it was not possible to �nd answer-bearing sentence for all questions. However, we used
only 116 questions, leaving out �ve questions where our query reformulation procedure (see
Section 4.2) did not generate a reformulation.

Queries of the second type were used to evaluate retrieval e�ciency as well as the loss
of recall due to the early termination heuristic. They were created using 1000 randomly
sampled sentences from the AQUAINT collection. For each of the sentence, we generated
four queries that represented the complete annotation graph with respect to one or more
annotation type (stop words were not included). Because the query language allows us
to explicitly specify both the graph nodes and edges, mapping of graphs to queries is a
straightforward operation.

Three queries were created for POS tags, semantic role labels (SRLs), and dependency
relations, respectively. The fourth query included annotations of all three types. POS tags
do not have parent-child links and, therefore, they represented simpler queries. Queries that
included all three annotation types were the hardest.

4.2 Setup

All experiments were carried out on a quad-core core-i7 laptop with 16 GB of DDR3 memory,
which ran OS Linux.

Performance of retrieval methods was evaluated using the mean average precision (MAP).
Similar results were obtained when performance was measured using the mean reciprocal
rank. The version of Apache SOLR was 4.6. The similarity model was BM25 [19].

The AQUAINT collection was annotated using the SENNA parser [6] to obtain POS tags,
named entities, SRLs, and syntax trees. Syntax trees were fed to the Stanford CoreNLP
toolkit [15] to produce dependency tress (syntax trees were subsequently discarded). Addi-
tionally the Stanford CoreNLP was employed for for sentence detection, lemmatization, and
POS tagging (POS tagging was done for the query analysis).

NLP pipelines were implemented on top of the UIMA ECD6, which is an extension of
the UIMA framework.7 All the major code for this project (pipelines, indexing software,
and the SOLR plugin) was written in the Java language. The SOLR Annographix plugin is

6https://github.com/oaqa/uima-ecd
7https://uima.apache.org/
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Dict. Freq. + Positions O�sets Annot. Total

skips tuples

0.07 0.44 1.91 0.7 19.7 22.8

Table 4: Index Size Statistics (in GBs)

publicly available online.8

We used a query reformulation module (originally implemented for another project). For
example, given interrogative queries in the form �Where is Ei�el Tower?� and an answer
�Paris�, the query reformulation module generated a declarative statement �Ei�el Tower is
located in Paris". The use of this module consistently and substantially (by about 10%)
improved performance of all unstructured and structured retrieval models.

The query reformulation module can be seen as a Java reimplementation of the Lin's [13]
query reformulation module developed for the QA system Aranea (written in Perl). Similar
to Aranea, it relied on POS tagging, although we did not use several inexact heuristics that
tend to generate mostly ungrammatical reformulations. This simpli�cation came at a price:
we could not generate reformulations for about 10% of TREC QA questions.

4.3 Results

4.3.1 Index Size

In addition to the text of AQUAINT news articles, we indexed POS tags, named entities,
SRLs, dependency trees, as well as annotations delineating sentence and paragraph bound-
aries. It took one hour to index approximately 0.375 billion regular terms and 1.321 billion
annotations in an single-thread mode.

In total, the index occupied almost 23 GBs (see Table 4). Most of the space was consumed
by uncompressed annotation tuples (each of which was 16 bytes).

Somewhat unexpectedly, term o�sets used much less space than term positions. The
reason is that o�sets were stored only for the text �elds, but positions needed to be stored for
both the text and the annotation �eld. Because there were three times as many annotations
as text terms, the overall number of positions to be indexed was 4x the number of o�sets.

4.3.2 Answer-Bearing Sentence Queries

In this section, we focus on the task of document retrieval using unstructured and structured
queries. The structured queries were created from answer-bearing sentences as described in
Section 4.1.

Similar to Bilotti [3], we considered a single structure and an every structure scenario.
The di�erence is that Bilotti concentrated on a sentence retrieval task, while we evaluated the
e�ectiveness of document retrieval. In fact, as explained in Section 3.2, we cannot support
retrieval of a sub-document textual segments in SOLR by reimplementing only the query
parser/plugin.

8https://github.com/oaqa/annographix
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1 _query_: "{!edismax mm=3 ps=20} wilt chamberlain score 100 point
" OR

2 "Wilt Chamberlain"∼10^0.3 OR "Wilt score"∼10^0.3 OR
3 "Chamberlain score"∼10^0.3 OR "Chamberlain 100"∼10^0.3 OR
4 "score 100"∼10^0.3 OR "score points"∼10^0.3 OR

"100 points"∼10^0.3

Table 5: The query generated for the query reformulation �Wilt Chamberlain scored 100
points�. Line numbers are given only for presentation purposes.

In the single structure scenario, each answer-bearing sentence and a corresponding query
are considered to represent a unique topic, for which there is exactly one relevant document.
This document contains the answer-bearing sentence.

In the every structure scenario, queries created from answer-bearing sentences are grouped
by the original TREC QA question. Therefore, for each of the 116 TREC QA questions
used in our evaluation (see Section 4.1 for query selection details), we usually have multiple
queries. Each of this queries is executed and results are combined.

To combine results, we merged document IDs returned by several queries and sorted them
by their retrieval scores. If the same document ID was returned by more than one query, we
used the maximum of the scores. We also tried the round-robin combination approach, but
it always delivered inferior performance (about 10% worse than the simple max).

We experimented with several types of unstructured queries and found that:

� A simple bag-of-words SOLR query (without any proximity operators) is outperformed
by a sloppy-phrase query. The sloppy phrase retrieval model favors, but not enforces,
occurrences of query terms within a text window of a given size;

� An unstructured query that is based on the result of query reformulation is more
e�ective than either the original question or the query obtained by the projection of
an answer-bearing sentence to the corresponding query;

� Performance of sloppy-phrase queries can be further improved by OR-ing them with
phrasal queries constructed using original query bigrams. This approach is somewhat
similar to the term-dependency model [16].

A sample query generated for the query reformulation �Wilt Chamberlain scored 100
points� is presented in Table 5. The �rst line shows a sloppy-phrase sub-query that returns
documents containing at least three terms (parameter mm=3) out of the speci�ed four. It
favors occurrences where terms are found in the window of the size 20 (parameter ps=20).
It is combined (via the OR operator) with several sub-queries that search for ordered query
bigrams within the window of the size 10. The score of any bigram occurrence is multiplied
by 0.3.
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Every structure Single structure

MAP MAP

baseline 0.25 0.07
combined 0.33 (+32%) 0.13 (+86%)

Table 6: Comparison of MAP for Single and Every Structure scenarios

To sum up, baseline non-structured queries were created by carrying out query refor-
mulation, creating a sloppy-phrase query, and enhancing it by bigram queries as shown in
Table 5. There are several parameters (such the bigram boost value or the size of the win-
dow) that were manually tuned for the complete test set of questions, to maximize the MAP.
Optimizing baseline performance on the given test set makes it harder for other methods to
outperform the baseline.

To verify if unstructured queries can be improved by structured retrieval capabilities,
we OR-ed unstructured queries with structured queries generated from answer-bearing sen-
tences. The obtained queries had two parameters: the boost value for a structured query
and the length of the span (see Table 3). The optimal parameter values were obtained by
an eight-fold cross validation.

The results are presented in Table 6. Performance was measured using the MAP; both
p-values were smaller than 0.001 (computed using the permutation test [24]). It can be seen
that queries with linguistically-motivated constraints outperformed unstructured queries. In
that, the di�erences were substantial and statistically signi�cant.

We conclude this subsection by noting that, because we evaluated document rather than
sentence retrieval and used a di�erent subset of queries, the results are not directly compa-
rable to results in Table 5.1 of Bilotti [3].

4.3.3 E�ciency-E�ectiveness Tradeo�s

To study how the choice of the early termination threshold a�ects retrieval speed and ac-
curacy, we experimented with both types of queries. More speci�cally, we used all the SRL
queries generated from (200) answer-bearing sentences as well as 1000 queries of the second
type. Recall, that the latter represented annotation graphs of randomly selected corpus sen-
tences (see Section 4.1). Queries of the second type are often quite complex. For example,
if the query represents a complete graph of dependency relations, it has one containment
operator and one parent-child relationship operator for each non-stop word.

For each set of queries we varied the maximum number of iterations within a span, i.e.,
the early termination threshold, and measured three parameters: the MAP, the binary recall,
and the mean retrieval time for the in-memory index scenario. E�ectiveness was measured
as in the single structure experiment (see Section 4.3.2). Speci�cally, each sentence was
considered to be a unique topic with a single relevant document (containing this sentence).

To simulate retrieval for the case when the index is fully loaded into memory, we ran each
query twice and recorded time only for the second run. In that, we also ensured that the
SOLR result cache was fully disabled and that the query plugin processed the query every
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Figure 1: E�ciency and e�ectiveness plots for various values of the early termination thresh-
old.

time we sent a request to the SOLR server.9 The results are given in Figure 1.
First, consider queries generated from answer-bearing sentences, which are labeled as

as SRL (answer-bearing). These sentences are simple and do not require more than one
thousand brute-force iterations for the veri�cation of a single occurrence. However, the MAP
is rather low (see Figure 1b), because these queries are less speci�c than queries generated
from complete annotation graphs (without projecting to the TREC QA topics).

Queries of the second type have the MAP as high as 0.8, but they can be more expen-
sive to evaluate. For example, e�ectiveness of queries generated from dependency graphs
grows substantially till the maximum number of iterations reaches 106. Beyond this value,
we observe only marginal improvements in e�ectiveness, while the retrieval time increases
substantially.

To sum up, for all types of queries, the threshold value of 107 provides the binary recall
at least as high as 0.9. In that, the mean retrieval time is less than 100 ms. Thus, our
implementation is not ideal, but it can be useful even in its current form.

5 Conclusions

We implemented SOLR Annographix, which is a software suite for indexing and querying an-
notation graphs generated by NLP pipelines. The e�ectiveness and e�ciency of the software
was evaluated in the retrieval tasks where queries were created:

� by projecting annotation graphs of answer-bearing sentences to TREC QA topics;

� from annotation graphs of randomly chosen sentences without projection.

9To be 100% sure, we logged all events when our query parser was instantiated and veri�ed that the log
entries appeared in the log when a query was repeated.
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In the document retrieval task, SOLR Annographix outperformed a proximity-enhanced
bag-of-words model. In this scenario, queries were simple and could have been evaluated
e�ciently without the early termination heuristic.

In the task of retrieving sentences using their unprunned annotation graphs, queries were
more complex and the early termination were crucial to e�cient processing. Yet, it was
possible to achieve the binary recall of 0.9 while answering queries in less than 100 ms on
average.

We believe that the current software can already be useful. Yet, it will bene�t from the
following enhancements:

� The simplistic constraint veri�cation algorithm should be replaced by an algorithm
with better worst-case performance guarantees, which, ideally, would not require an
early-termination heuristic. There is a number of ways to achieve this goal, yet, a
corresponding discussion is beyond the scope of this report.

� Annotations can outnumber original text terms. Thus, the current scheme where each
annotation tuple uses 16 bytes is quite wasteful. The space consumption can be reduced
by using, e.g., a simple frame-of-reference scheme [11].

� Our query language is expressive and allows one to directly specify the annotation
sub-graph in terms of nodes and connecting edges. Yet, it is not always convenient for
humans to use. Thus, this issue needs to be addressed.
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