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ABSTRACT
Retrieval pipelines commonly rely on a term-based search to ob-
tain candidate records, which are subsequently re-ranked. Some
candidates are missed by this approach, e.g., due to a vocabulary
mismatch. We address this issue by replacing the term-based search
with a generic k-NN retrieval algorithm, where a similarity func-
tion can take into account subtle term associations. While an exact
brute-force k-NN search using this similarity function is slow, we
demonstrate that an approximate algorithm can be nearly two orders
of magnitude faster at the expense of only a small loss in accuracy.
A retrieval pipeline using an approximate k-NN search can be more
effective and efficient than the term-based pipeline. This opens up
new possibilities for designing effective retrieval pipelines. Our
software (including data-generating code) and derivative data based
on the Stack Overflow collection is available online.1 This revision
is a slightly extended version of the respective CIKM’16 paper.
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1. INTRODUCTION
Due to advances in computing, a full-text search has become a

ubiquitous information technology. However, this technology still
largely relies on memorization of document terms and matching
them with the query terms provided by a user.

The full-text search is powered by a term-based inverted index:
a classic data structure that links document terms—and sometimes
phrases—with their locations in a text collection. This way of
organizing text data traces back to paper book indices containing
alphabetical lists of principal words. In particular, it was used in a
13th century Bible concordance, long before the computer era [22].

1https://github.com/oaqa/knn4qa
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Modern retrieval systems answer queries in a pipeline fashion.
First, an term-based inverted index is used to generate a list of
candidate documents containing some or all query terms. Second,
this list is refined and re-ranked. A few highly-ranked documents
are then presented to the user.

Re-ranking may be carried out in several steps, where earlier steps
employ cheap ranking functions—such as BM25 [58] or language
models [55]—relying solely on term occurrence statistics. A final,
aggregation, step typically combines numerous relevance signals
generated by upstream components. The aggregation step is often
carried out using statistical learning-to-rank algorithms [38].

This filter-and-refine approach hinges on the assumption that a
term-based search generates a reasonably complete list of candidate
documents. However, this assumption is not fully accurate, in
particular, because of a vocabulary gap, i.e., a mismatch between
query and document terms denoting same concepts. The vocabulary
gap is a well-known phenomenon. Furnas et al. [24] showed that,
given a random concept, there is less than a 20% chance that two
randomly selected humans denote this concept using the same term.
Zhao and Callan [77] found that a term mismatch ratio—i.e., a rate
at which a query term fails to appear in a relevant document—is
roughly 50%.

Furthermore, according to Furnas et al. [24], focusing only on a
few synonyms is not sufficient to effectively bridge the vocabulary
gap. Specifically, it was discovered that, after soliciting 15 syn-
onyms describing a single concept from a panel of subject experts,
there was still a 20% chance that a new person coined a previously
unseen term. To cope with this problem, Furnas et al. [24] proposed
a system of unlimited term aliases, where potential synonyms would
be interactively explored and presented to the user in a dialog mode.

An established automatic technique aiming to reduce the vocabu-
lary gap is a query expansion. It consists in expanding (and some-
times rewriting) a source query using related terms and/or phrases.
For efficiency reasons, traditional query expansion techniques are
limited to dozens of expansion terms [12]. Using hundreds or thou-
sands of expansion terms seems to be infeasible within a framework
of the term-based inverted index. In contrast, we demonstrate that a
system of unlimited term aliases can be successfully implemented
within a more generic framework of a k-nearest neighbor search
(k-NN search).

It has been long recognized that the k-NN search shows a promise
to make retrieval a conceptually simple optimization procedure [32].
This approach may permit a separation of labor between data sci-
entists, focusing on methods’ accuracy, and software engineers,
focusing on development of more efficient and/or scalable search
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approaches. However, the k-NN search proved to be a challenging
problem due to the curse of dimensionality. There is empirical and
theoretical evidence that this problem cannot be solved both exactly
and efficiently in a high-dimensional setting [71, 5, 13, 52]. For
some data sets, e.g., in the case of vectors with randomly generated
elements, exact methods degenerate to a brute force search for just
a dozen of dimensions [71, 5]. Some data sets only “look” high-
dimensional, but possess properties of low-dimensional data sets,
i.e., they have a low intrinsic dimensionality [33, 5, 13]. Unfortu-
nately, textual data seems to be intrinsically high-dimensional. For
example, using the definition of Chávez et al. [13], we estimate that
the intrinsic dimensionality of Wikipedia TF×IDF vectors is about
2500 in the case of the metric angular distance.

The curse of dimensionality can be partially lifted by using Lo-
cality Sensitive Hashing (LSH) techniques [8, 27, 35]. There are
numerous modifications of LSH, which differ primarily in how they
construct families of locality-sensitive functions [69]. Most of the
research focuses on hash functions for well-studied similarities, such
as the Euclidean distance and the cosine similarity.

In this paper, however, we explore an effective similarity function
BM25+Model 1, which is neither metric nor symmetric (see § 2.1.3).
We demonstrate that it is possible to carry out an efficient and effec-
tive k-NN search (for BM25+Model 1) using pivoting techniques.
In that, the approximate k-NN search is nearly two orders of magni-
tude faster than the respective exact brute force search. The k-NN
search can be 1.5× faster than Lucene, while being more effective
due to bridging the vocabulary gap.

To ease reproducibility, we make our software (including data-
generating code) and derivative data based on the Stack Overflow
collection available online.2

2. APPROACH
We focus on a task of searching a large collection of answers

extracted from a community QA website. The questions and answers
are submitted by real people, who also select best answers. A
question and the respective best answer represent one QA pair.
While community QA is an important task on its own, it is used
here primarily as a testbed to demonstrate the potential of the k-NN
search as a substitute for term-based retrieval. Due to the curse of
dimensionality, we have to resort to approximate searching. Note
that we need a similarity function that outstrips the baseline method
BM25 by a good margin. Otherwise, gains achieved by employing a
more sophisticated similarity would be invalidated by the inaccuracy
of the search procedure.

One effective way to build such a similarity function is to learn a
generative question-answer translation model, e.g., IBM Model 1
[10]. However, “. . . the goal of question-answer translation is to
learn associations between question terms and synonymous answer
terms, rather than the translation of questions into fluent answers.”
[57] The idea of using a translation model in retrieval applications
was proposed by Berger et al. [4]. It is now widely adopted by the IR
and QA communities [18, 62, 57, 74, 63, 23]. Linearly combining
BM25 and logarithms of IBM Model 1 scores produces a similarity
function that is considerably more accurate than BM25 alone (by
up to 30% on our data, see Table 3).

Learning IBM Model 1 requires a large monolingual parallel
corpus. In that, the community QA data sets seem to be the best
publicly available source of such corpora. Note that a monolingual
corpus can be built from search engine click-through logs [56]. Yet,
such data is not readily available for a broad scientific community.
Another advantage of community QA data sets is that they permit a

2https://github.com/oaqa/knn4qa

large scale automatic evaluation with sizeable training and testing
subsets.

Specifically, we extract QA pairs from the following collections:

• L6 - Yahoo! Answers Comprehensive version 1.0 (about 4.4M
questions);

• L5 - Yahoo! Answers Manner version 2.0 (about 142K ques-
tions), which is a subset of L6 created by Surdeanu al. [63];

• Stack Overflow (about 8.8M answered questions).

Yahoo! Answers collections are available through Yahoo! WebScope
and can be requested by researchers from accredited universities.3

For each question, there is always an answer (and the best answer is
always present). The Stack Overflow collection is freely available
for download.4 While there are 8.8M answered questions, the best
answer is not always selected by an asker. Such questions are
discarded leaving us with 6.2M questions.

Each question has a (relatively) short summary of content, which
is usually accompanied by a longer description. The question sum-
mary concatenated with the description is used as a query with the
objective of retrieving the corresponding best answer. The best
answer is considered to be the only relevant document for the query.

The accuracy of a retrieval system is measured using standard
IR metrics: a Mean Reciprocal Rank (MRR), a precision at rank
one (P@1) and an answer recall measured for the set of top-N
ranked documents. P@1—our main evaluation metric—is equal to
a fraction of queries where the highest ranked document is a true
best answer to the question.

We process collections by removing punctuation, extracting to-
kens and term lemmas using Stanford CoreNLP [42] (instead, one
can use any reasonably accurate tokenizer and lemmatizer). All
terms and lemmas are lowercased; stopwords are removed. Note
that we keep both lemmas and original terms. In Stack Overflow we
remove all the code (the content marked by the tag code).

Each collection is randomly split into several subsets, which in-
clude training, two development (dev1 and dev2), and testing subsets.
In the case of Comprehensive and Stack Overflow, there is an addi-
tional subset that is used to learn IBM Model 1. The answers from
this subset are indexed, but the questions are discared after learning
Model 1 (i.e, they are not used for training and testing). In the case
of Manner, IBM Model 1 is trained on a subset of Comprehensive
from which we exclude QA pairs that belong to Manner. The split
of Manner mimics the setup Surdeanu et al. [63] and the test set
contains 29K queries. Collection statistics is summarized in Table 1.

Collection
name QA pairs Terms in

question
Terms in
answer

total train dev1/dev2 test tran

Manner 142K 86K 7K/21K 29K 4.2M 13.9 40.6
Comprehensive 4.4M 212K 11K/42K 10K 4.1M 17.8 34.1
Stack Overflow 6.2M 298K 15K/58K 10K 5.8M 48.4 33.1

Table 1: Collection statistics. The column tran describes the size of
the BM25+Model 1 training corpus. Note that for Manner we use
an external corpus to train BM25+Model 1.

We have implemented multiple retrieval methods and four similar-
ity models (i.e., similarity functions). Retrieval methods, similarity
models, and their interactions are summarized in Figure 1. Each
3https://webscope.sandbox.yahoo.com
4We use a dump from https://archive.org/download/stackexchange
dated March 10th 2016.
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Figure 1: Retrieval pipeline architecture. We illustrate the use of
evaluation metrics (inside ovals at the bottom) by dotted lines, which
connect ovals with components for which metrics are applied.

retrieval method returns a ranked list of answers, which may be op-
tionally re-ranked. The output is a list of N scored answers. There
are two classes of retrieval methods: term-based retrieval supported
by Apache Lucene5 and the k-NN search methods implemented in
the Non-Metric Space Library (NMSLIB). NMSLIB is an extendible
framework for the k-NN search in generic spaces [7].6 Similarity
models include:

• TF×IDF models: the cosine similarity between TF×IDF
vectors (shortly Cosine TF×IDF ) and BM25 (§2.1.1);

• The cosine similarity between averaged word embeddings,
henceforth, Cosine Embed (§2.1.4);

• The linear combination of BM25 and IBM Model 1 scores,
henceforth, BM25+Model 1 (§2.1.3).

In the case of Lucene, we index lemmatized terms and use BM25
as a similarity model [58]. We have found that Lucene’s imple-
mentation of BM25 is imperfect (see § 2.1.1 for details), which
leads to at least a 10% loss in P@1 for both Comprehensive and
Stack Overflow. To compensate for this drawback, we obtain 100
top-scored documents using Lucene and re-rank them using our own
implementation of BM25.

In the case of NMSLIB, we use two indexing methods and the
brute force search. The indexing methods are: the Neighborhood
APProximation index (NAPP) [64] and the Small-World graph (SW-
graph) [39]. They are discussed in § 2.2. The SW-graph is used
only with the Cosine Embed; NAPP is applied to both BM25 and
BM25+Model 1. We do not create an index for the Cosine TF×IDF,
but use the brute force search instead. The brute force search is slow,
but it is applicable to any similarity model.

Because the Cosine TF×IDF and Cosine Embed are not very ac-
curate, the output from these models may be further re-ranked using
BM25. To this end, we first retrieve 500 candidate records. Next,
we discard all butN records with highest BM25 scores. To compare
effectiveness of Cosine TF×IDF and BM25, we also evaluate a
variant where the output of Cosine TF×IDF is not re-ranked.

To re-rank efficiently, we use a forward index. Given a document
identifier, this index allows us to quickly retrieve the list of terms
and their in-document frequencies. Following a recent trend in
5http://lucene.apache.org
6https://github.com/searchivarius/nmslib

high throughput in-memory database systems [31], we load forward
indices into memory. The overall re-ranking time is negligibly small.

Note that the depth of a candidate pool represents a reasonable
efficiency-effectiveness trade-off. While increasing the depth of
the pool improves the answer recall, it also makes it harder to rank
results accurately. Beyond a certain point, increasing the depth
leads only to a marginal improvement in P@1 at the expense of
disproportionately large computational effort.

2.1 Similarity Models

2.1.1 Cosine TF×IDF and BM25
Cosine TF×IDF and BM25 are computed for lemmatized text.

Cosine TF×IDF is the classic model where the similarity score is
equal to the cosine similarity between TF×IDF vectors [59, 41]. An
element i of such a vector is equal to the product of the unnormalized
term frequency TFi and the inverse document frequency (IDF). To
compute IDF, we use the formula implemented in Lucene:

ln (1 + (D − d+ 0.5)/(d+ 0.5)) , (1)

where D is the number of documents and d is the number of docu-
ments containing the term i.

BM25 scores [58] are computed as the sum of term IDFs (Eq. 1)
multiplied by respective normalized term frequencies. The sum
includes only terms appearing in both the query and the answer.
We also normalize BM25 scores using the sum of query term IDFs.
Normalized frequencies are as follows:

TFi · (k1 + 1)

TFi + k1 ·
(
1− b+ b · |D| · |D|−1

avg
)
,

(2)

where k1 and b are parameters (k1 = 1.2 and b = 0.75); |D| is a
document length in words; |D|avg is the average document length.
Lucene’s implementation of BM25 uses a lossy compression for the
document length, which results in reduced effectiveness.

2.1.2 IBM Model 1
Computing translation probabilities via IBM Model 1 [10] is

one common way to quantify the strength of associations among
question and answer terms. The transformed IBM Model 1 scores
are used as input to a learning-to-rank algorithm. Specifically, we
take the logarithm of the translation probability and divide it by the
number of query terms.

Let T (q|a) denote a probability that a question term q is a trans-
lation of an answer term a. Then, a probability that a question Q is
a translation of an answer A is equal to:

P (Q|A) =
∏
q∈Q

P (q|A)

P (q|A) = (1− λ)
[ ∑
a∈A

T (q|a)P (a|A)
]
+ λP (q|C)

(3)

T (q|a) is a translation probability learned by the GIZA++ toolkit
[50] via the EM algorithm; P (a|A) is a probability that a term a is
generated by the answer A; P (q|C) is a probability that a term q is
generated by the entire collection C; λ is a smoothing parameter.
P (a|A) and P (q|C) are computed using the maximum likelihood
estimator. For an out-of-vocabulary term q, P (q|C) is set to a small
number (10−9). Similar to BM25 and Cosine TF×IDF, computation
is based on the lemmatized text.

A straightforward but slow approach to compute IBM Model 1
scores involves storing T (q|a) in the form of a sparse hash table.
Then, computation of Eq. 3 entails one hash table lookup for each
combination of question and answer terms. We can do better by
creating an inverted index for each query, which permits retrieving
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Prior art [63]

N = 15 N = 25 N = 50 N = 100

Recall 0.290 0.328 0.381 0.434
P@1 0.499 0.445 0.385 0.337
MRR 0.642 0.582 0.512 0.453

This paper

N = 10 N = 17 N = 36 N = 72

Recall 0.293 0.331 0.386 0.438
P@1 0.571 (+14%) 0.511 (+15%) 0.442 (+15%) 0.392 (+16%)
MRR 0.708 (+10%) 0.645 (+11%) 0.570 (+11%) 0.510 (+13%)

Table 2: Comparison of BM25+Model 1 against prior art on Man-
ner. Accuracy is computed for several result set sizes N using the
methodology of Surdeanu et al. [63]. Each column corresponds to a
different subset of queries.

query-specific entries T (q|a) using the identifier of answer term a
as a key. Thus, we need only one lookup per answer term. Identifiers
are indexed using an efficient hash table (the class dense_hash_map
from the package sparsehash)7. Building such an inverted index is
computationally expensive (about 15ms for each Comprehensive
and 90ms for each Stack Overflow query). Yet, the cost is amortized
over multiple comparisons between the query and data points.

We take several measures to maximize the effectiveness of IBM
Model 1. First, we compute translation probabilities on a sym-
metrized corpus as proposed by Jeon et al. [30]. Formally, for every
pair of documents (A,Q) in the parallel corpus, we expand the
corpus by adding entry (Q,A).

Second, unlike previous work, which seems to use complete trans-
lation tables, we discard all translation probabilities T (q|a) below
an empirically found threshold of 2.5 · 10−3. The rationale is that
small probabilities are likely to be the result of model overfitting.
Pruning of the translation table improves both efficiency and effec-
tiveness. It also reduces memory requirements.

Third, following prior proposals [30, 63], we set T (w|w), a self-
translation probability, to an empirically found positive value and
rescale probabilities T (w′|w) so that

∑
w′ T (w

′|w) = 1.
Fourth, we make an ad hoc decision to use as many QA pairs as

possible to train IBM Model 1. A positive impact of this decision
has been confirmed by a post hoc assessment.

Finally, we tune parameters on a development set (dev1 or dev2).
Rather than evaluating individual performance of IBM Model 1, we
aim to maximize performance of the model that linearly combines
BM25 and IBM Model 1 scores.

2.1.3 BM25+Model 1
BM25+Model 1 is a linear two-feature model, which includes

BM25 and IBM Model 1 scores. Optimal feature weights are ob-
tained via a coordinate ascent with 10 random restarts [43]. The
model is trained via RankLib8 using P@1 as a target optimization
metric. To obtain training data, we retrieve N = 15 candidates with
highest BM25 scores [58] using Lucene. If we do not retrieve a true
answer, the query is discarded. Otherwise, we add the true answer
to the training pool with the label one (which means relevant), and
the remaining retrieved answers with the label zero (which means
non-relevant).

To demonstrate that BM25+Model 1 delivers state of the art
performance, we compare our result on Manner against a previously
7 The code, originally written by Craig Silverstein, is now hosted at
https://github.com/sparsehash/sparsehash
8https://sourceforge.net/p/lemur/wiki/RankLib/

published result [63]. We mimic the setup of Surdeanu et al. [63]
and use only questions for which a relevant answer is found (but
not necessarily ranked number one). We also split the collection
in the same proportions as Surdeanu et al. [63].9 Furthermore, we
measure P@1 at various recall levels by varying the result sizes N
(which are different from those used by Surdeanu et al [63]).

According to Table 2, our method surpasses the previously pub-
lished result by 14–26 % in P@1, and by 10–11 % in MRR despite
using only two features. This may be explained by two factors. First,
we use a 50× larger corpus to train IBM Model 1. Second, the
retrieval module Terrier BM25 (employed by Surdeanu et al. [63])
seems to have inferior retrieval performance compared to Lucene.
In particular, Lucene achieves a higher recall using a smaller N (see
Table 2).

2.1.4 Cosine Embed
Word embeddings, also known as distributed word representa-

tions, are real-valued vectors associated with words. Word embed-
dings are usually constructed in an unsupervised manner from large
unstructured corpora via artificial neural networks. [14, 44]. Be-
cause embeddings can capture syntactic and semantic regularities
in language [66, 45], embedding-based similarity can be useful in
retrieval and re-ranking tasks [23, 75]. The hope here is that com-
paring embeddings instead of original words would help to bridge
the vocabulary gap.

One popular embedding-based similarity measure is the average
cosine similarity computed for all pairs of question and answer
terms. The average pairwise cosine similarity is equal to the co-
sine similarity between averaged word embeddings of questions
and answers. In our work we use the cosine similarity between
IDF-weighted averaged embeddings. Here, we use embeddings of
non-lemmatized terms, because this results in a slightly improved
performance. We evaluate several sets of pre-trained embeddings
to select the most effective ones [44, 51, 73]. We further improve
embeddings by retrofitting [21]. In that, Model 1 translation table
T (q|a) (see Eq. 3) is used as a relational lexicon.

2.2 Methods of k-NN Search
We employ a k-NN retrieval framework NMSLIB, which pro-

vides several implementations of distance based indexing meth-
ods [7]. These indexing methods treat data points as unstructured
objects, together with a black-box distance function. In that, the
indexing and searching process exploit only values of mutual object
distances. NMSLIB can be extended by implementing new black-
box “distance” functions. In particular, we add an implementation
for the similarity functions BM25, Cosine TF×IDF, Cosine Embed,
and BM25+Model 1 (see in §2.1). None of these similarity functions
is a metric distance. In particular, in the case of BM25+Model 1 the
“distance” lacks symmetry.

Because exact k-NN search is too slow to be practical, we resort
to an approximate procedure, which does not necessarily find all k
nearest neighbors. The accuracy of the k-NN search is measured
using a recall denoted as R@k. R@k is equal to the fraction of true
k-nearest neighbors found.

NMSLIB reads contents of the forward index (created by a sep-
arate indexing pipeline) into memory and builds an additional in-
memory index. In this work, we create indices using one of the
following method: the Neighborhood APProximation index (NAPP)
due to Tellez et al. [64] or the proximity graph method called a
Small-World graph (SW-graph) due to Malkov et al. [39].
9The exact split used by Surdeanu et al. [63] is not known. To
ensure that the differences are substantial and significant, we also
compute 99.9% confidence intervals.
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Figure 2: The answer recall at different N . (BF stands for brute-force; +rerank and -rerank indicate if an optional re-ranker is used).

NAPP is a pivoting method that arranges points based on their
distances to pivots. This is a filtering method: Candidate points
share numPivotSearch closest pivots with the query point. The
search algorithm employs an inverted index. Unlike term-based
indices, however, for each pivot the index keeps references to close
data points. More specifically, the pivot should be one of the point’s
numPivotIndex closest pivots. Answering a query requires effi-
cient merging of posting lists. Merging of posting lists represents a
substantial overhead.

Tellez et al. [64] use pivots randomly sampled from the data set,
but we find that for sparse data such as TF×IDF vectors substantially
shorter retrieval times—sometimes by orders of magnitude—can be
obtained by using a special pivot generation algorithm. Specifically,
pivots are generated as pseudo-documents containing K entries
sampled from the set of M most frequent words (in our setup K =
1000 and M = 50000). A more detailed description and analysis
of this approach will be presented elsewhere.

During indexing, we have to compute the distances between a
data point and every pivot. Because there are thousands of pivots,
this operation is quite expensive, especially for BM25+Model 1. To
optimize computation of Eq. 3, we organize all pivot-specific T (q|a)
entries in the form of the inverted index.

A proximity graph is a data structure, where data points are nodes.
Sufficiently close nodes, i.e., neighbors, are connected by edges.
Searching starts from some, e.g., random, point/node and traverses
the graph until it stops discovering new points sufficiently close
to the query or after visiting a given number of nodes. [2, 60, 26,
25, 16, 70]. Specifically, the SW-graph algorithm (implemented
in NMSLIB) keeps a list of efSearch points sorted in the order
of increasing distance from the query as well as a candidate queue.
Traversal proceeds in the best-first manner, by exploring the neigh-
borhood of the candidate that is closest to the query. If a candidate
neighbor is closer to the query than the efSearch-th closest point
seen so far, it is added to the candidate queue. Otherwise, the neigh-
bor is discarded. The traversal stops when the candidate queue is
exhausted. To improve recall, the algorithm may restart several
times. For our data, however, it is more efficient to start from a
single point and search using a large-enough value of efSearch.

SW-graph works well for dense vectorial data (i.e., embeddings),
where it outstrips NAPP by an order of magnitude. SW-graph was
found to be much faster [49] than the multi-probe LSH due to Dong
et al. [17]. In a public evaluation in May 2016,10 SW-graph outper-
formed two efficient popular libraries: FLANN [48] and Annoy11.
SW-graph was also mostly faster than a novel LSH algorithm [1].
In contrast, NAPP substantially outperforms SW-graph for sparse
TF×IDF data, i.e., for models BM25 and BM25+Model 1.

3. MAIN EXPERIMENTS
Experiments are carried out on Amazon EC2 instance r3.4xlarge,

which has 16 virtual cores and 122 GB of memory. The main
retrieval pipeline, which is implemented in Java (1.8.0_11), uses 16
search threads. We use a modified version of NMSLIB 1.5,12 which
operates as a server processing queries via TCP/IP. NMSLIB and its
extensions are written in C++ and compiled using GCC 4.8.4 with
optimization flags -O3 and -march=native. Lucene version is
4.10.3. The retrieval architecture (see § 2) is outlined in Figure 1.

The collection processing/indexing system is implemented in Java.
It employs the framework Apache UIMA and UIMA components
from DKPro Core [19].13 Translation probabilities are computed
using GIZA++ toolkit [50] via the EM algorithm (five iterations).14

For each approximate k-NN pipeline, we execute several runs
with different parameters. In the case of SW-graph, we vary the
parameter efSearch. In the case of NAPP, we vary the number
of indexed pivots (parameter numPivotIndex) and the number
of pivots that should be shared between the query and an answer
(numPivotSearch). Optimal parameters have been found on a
dev1 set (using a subset of 5K queries).

Retrieval times are measured by a special client application that
submits search requests to either Lucene or NMSLIB. In the case

10https://github.com/erikbern/ann-benchmarks
11https://github.com/spotify/annoy
12https://github.com/searchivarius/nmslib/tree/nmslib4a_cikm2016
13https://dkpro.github.io/dkpro-core/
14https://github.com/moses-smt/giza-pp

https://github.com/erikbern/ann-benchmarks
https://github.com/spotify/annoy
https://github.com/searchivarius/nmslib/tree/nmslib4a_cikm2016
https://dkpro.github.io/dkpro-core/
https://github.com/moses-smt/giza-pp


Stack Overflow Comprehensive

Query
time

Speed-up
(over BF) P@1 P@1

loss
Answer
recall

Answer recall
loss

Query
time

Speed-up
(over BF) P@1 P@1

loss
Answer
recall

Answer recall
loss

BF BM25+Model 1

20.5 s 0.081* 0.300* 8 s 0.077* 0.278*

NAPP BM25+Model 1

0.84 s 24 0.080* 1.1% 0.290* 3.3% 0.70 s 11 0.075* 2.6% 0.269* 3.1%
0.65 s 32 0.079* 2.2% 0.283* 5.7% 0.30 s 27 0.074* 4.7% 0.261* 6.1%
0.50 s 35 0.078* 3.1% 0.276* 8.2% 0.21 s 38 0.073 5.7% 0.256* 8.1%
0.47 s 44 0.076* 5.8% 0.263* 12.4% 0.18 s 45 0.070 9.7% 0.234 16.0%
0.40 s 52 0.074* 8.2% 0.252* 16.1% 0.09 s 89 0.068 12.4% 0.227* 18.5%

BF BM25

3.5 s 0.062 0.239 1.7 s 0.067 0.239

NAPP BM25

0.23 s 15 0.060 2.1% 0.228* 4.7% 0.37 s 5 0.063* 5.1% 0.227* 5.0%
0.14 s 25 0.059* 5.0% 0.221* 7.6% 0.18 s 9 0.062* 6.6% 0.222* 7.1%
0.07 s 50 0.057* 7.6% 0.208* 12.9% 0.15 s 11 0.061* 8.4% 0.217* 9.2%
0.06 s 56 0.055* 11.2% 0.195* 18.5% 0.15 s 11 0.060* 9.3% 0.212* 11.2%

Lucene BM25

0.62 s 0.062 0.229* 0.08 s 0.067 0.233*

BF Cosine Embed

3.9 s 0.041* 0.108* 2.7 s 0.055* 0.174*

SW-graph Cosine Embed

0.78 s 5 0.041* -0.2% 0.107* 0.6% 0.19 s 14 0.054* 1.6% 0.172* 1.0%
0.40 s 10 0.041* 0.5% 0.107* 0.8% 0.09 s 31 0.054* 3.1% 0.170* 1.9%
0.34 s 11 0.041* 0.7% 0.106* 1.3% 0.07 s 37 0.053* 3.6% 0.170* 2.4%
0.13 s 29 0.039* 4.9% 0.102* 5.8% 0.03 s 104 0.050* 10.3% 0.160* 7.8%

Table 3: Efficiency-effectiveness trade-offs of retrieval modules for N = 100 (brute force Cosine TF×IDF runs are omitted). Statistically
significant differences (at level 0.01) from BF BM25 are marked with *. P-values are adjusted for multiple testing via the Bonferroni correction.

of Lucene, we “warm up” the index by executing the whole set of
queries twice. Run-times are measured only for the third run.

Effectiveness of retrieval runs is measured using an external ap-
plication, namely, trec_eval 9.0.4.15 The main experimental results
are presented in Figure 2 and Table 3. For Table 3 we compute
statistical significance of results using the t-test with a subsequent
Bonferroni adjustment for multiple testing. This adjustment for
multiple testing consists in multiplying p-values by the total number
of runs for N = 100 (to save space, some of the runs are not shown
in the table). The significance level is 0.01.

In Figure 2 we plot the answer recall (measured for a set of
top-N ranked documents) for nine implemented retrieval modules.
Note that approximate k-NN methods are represented by their most
accurate runs. Exact brute force k-NN runs are plotted using thicker
lines (with star marks) of the same style/color as corresponding
approximate runs. Their mnemonic names start with the word BF
(short for brute force).

The cosine-similarity models are the least effective. The recall
of the brute force run BF Cosine TF×IDF -rerank is less than half
of that for the brute force run BF BM25. We can nearly match
the performance of BM25 by adding a BM25-based optional re-
ranker (the run BF Cosine TF×IDF +rerank). In contrast, the
cosine-similarity between averaged word embeddings (e.g., the run
BF Cosine Embed) is much worse than BM25 despite using the
re-ranker! Somewhat surprisingly, the cosine similarity between

15https://github.com/usnistgov/trec_eval

TF×IDF vectors without re-ranker is sometimes more effective than
the cosine similarity between word embeddings whose performance
is boosted by the re-ranker (see Panel 2a in Figure 2). This is a
discouraging finding given that embedding-based retrieval can be
quite efficient (see Table 3). It remains to be verified if better results
can be obtained with document embeddings that compute vectorial
representations of complete sentences or even documents [28, 36].

Note that all BM25-based runs have similar performance. How-
ever, BM25+Model 1 has a recall that is 16% higher in the case
of Comprehensive and 26% higher in the case of Stack Overflow.
For BM25, it is possible to match the recall of BM25+Model 1 by
increasing N . However, this may increase a load on a downstream
re-ranking module. For example, in the case of Stack Overflow,
BM25+Model 1 has a nearly 0.2 answer recall for N = 10 (Panel
2a in Figure 2). To obtain the same recall level using Lucene, we
need to use N > 20.

Next, we compare efficiency of k-NN search methods against
that of Lucene. Note that Lucene is a strong baseline, which fares
well against optimized C++ code, especially for disjunctive queries
[68]. Lucene’s average retrieval times are equal to 80ms for Com-
prehensive and 620ms for Stack Overflow (see Table 3). There are
at least two factors that contribute to the difference in retrieval times
between two collections: (1) questions in Stack Overflow have 2.7×
as many terms, (2) Stack Overflow has 1.4× as many answers (see
Table 1).

SW-graph is quite fast for both collections. For example, for
Stack Overflow, it can answer queries in 340ms at the expense of

https://github.com/usnistgov/trec_eval


Comprehensive

BM25+Model 1 BM25

R@1 Reduction in
distance comp. R@1 Reduction in

distance comp.

0.982 8.7 0.982 3.7
0.968 61 0.970 20
0.961 142 0.963 48
0.952 246 0.956 98
0.930 434 0.927 226

Stack Overflow

BM25+Model 1 BM25

R@1 Reduction in
distance comp. R@1 Reduction in

distance comp.

0.982 13.4 0.980 157
0.970 39 0.972 208
0.964 64 0.964 260
0.957 97 0.959 287
0.948 137 0.955 315

Table 4: Reduction in the number of the distance computation for
two similarity models at approximately equal levels of R@1 (larger
reduction is better). Using 5K queries from dev1 set.

losing only 1.3% answers compared to the brute force search (As
it is recently reported by Malkov and Yashunin [40], an improved,
hierarchical, variant of SW-graph is even more accurate and/or effi-
cient). In other words, the approximate search is nearly as accurate
as the exact one. This is why in Figure 2 the best approximate
SW-graph run for the model Cosine Embed and the run BF Cosine
Embed are hard to distinguish. However, the model Cosine Embed
is not very effective. It does not bridge the vocabulary gap and is
even worse than Cosine TF×IDF.

In the case of BM25, NAPP works well for Stack Overflow, but
not for Comprehensive. For example, in the case of Stack Overflow,
it answers queries in 230ms while losing only 2.1% in P@1 and
4.7% in the answer recall. This is nearly 2.7× faster than Lucene
and 15× faster than the brute force search using BM25.

For the more complicated model BM25+Model 1, NAPP delivers
similar speed ups over the brute force search for both collections.
However, it is always slower than Lucene in the case of Comprehen-
sive. In the case of Stack Overflow, NAPP is up to 1.5× faster than
Lucene. For the fastest posted retrieval time of 400ms it delivers
P@1 equal to 0.074 and the answer recall equal to 0.252.

Despite some degradation in comparison to the corresponding
exact brute force run, this represents an impressive 19.3% improve-
ment in P@1 and 5.4% improvement in the answer recall compared
to the brute force BM25. The second slowest BM25+Model 1 run
obtained by NAPP is nearly as efficient as Lucene, but it outperforms
BM25 by 27.4% in P@1 and by 18.4% in recall.

Also note that for Comprehensive, NAPP BM25+Model 1 can be
both faster and more accurate than NAPP BM25. This is quite sur-
prising given that BM25+Model 1 is expensive to compute. Specifi-
cally, the corresponding brute force run is nearly 5× slower com-
pared to the brute force run of BM25. There are two reasons for
why NAPP BM25+Model 1 can be more faster and accurate than
NAPP BM25. First, there is a high overhead related to merging pivot
posting lists. By varying method’s parameters we can reduce the
amount of time spent on computation of the distance (at the expense
of search accuracy). At some point the time spent on distance com-
putation becomes so small so that the overhead related to processing
of posting lists starts to dominate the overall time.

Second, there are differences in filtering effectiveness of the meth-
ods. To demonstrate this, we evaluate the reduction in the number of
distance computations compared to the brute force search. For exam-
ple, if an algorithm answers a query by checking only 10% of data
points, the reduction in the number of distance computations is 10.
Reductions in the number of distance computations are compared
for nearly equal values of the k-NN recall R@1, which is equal to
the fraction of true nearest neighbors found by the retrieval module
(R@1 should not be confused with the answer recall). The results
of this comparison are presented in Table 4. For NAPP, the more
pivots are indexed, the fewer distance computations are necessary to
achieve a given accuracy level. Thus, to make a fair comparison, we
index equal number of pivots for both BM25 and BM25+Model 1.

According to Table 4, in the case of Comprehensive, it takes 2-3×
fewer distance computations for the model BM25+Model 1 than for
BM25. In contrast, in the case of Stack Overflow, answering queries
for the model BM25 takes significantly fewer distance computations
than for BM25+Model 1. Furthermore, the reduction in the number
of distance computations for BM25 on Stack Overflow can be two
orders of magnitude higher compared to that of Comprehensive.
What are the possible explanations for these stark differences?

We think that pivoting methods are effective only if comparing
a query and an answer with the same pivot provides a meaning-
ful information regarding their proximity. In the case of a sim-
ple BM25 model, this is only possible if the pivot, the query, and
the answer have at least one common term. Such an overlap is
much more likely in the case of Stack Overflow where questions
are nearly 3× longer compared to Comprehensive. In contrast, for
the model BM25+Model 1 information regarding proximity of an-
swers and queries may be obtained if pivots, queries, and answers
share only related but not necessarily identical terms. Thus, using
BM25+Model 1 is more advantageous in the case of short queries
(e.g., in the case of Comprehensive).

To further illustrate importance of using the right function to
compute distance to pivots, we evaluate filtering effectivness in two
scenarious: (1) when the distance to pivots is computed using an
original distance function and (2) when the distance to pivots is
computed using a different, i.e., proxy function. For each scenarios,
we use two models: BM25+Model 1 and BM25. In the case of
BM25+Model 1, the proxy distance is BM25. In the case of BM25,
the proxy distance is Cosine TF×IDF. The results are presented in
Figure 3 where the curves corresponding to the original distance are
blue and the curves corresponding to the proxy distance are red.

Panels 3a and 3c show us what happens if the distance to pivots is
computed using cheap BM25 instead of expensive BM25+Model 1.
We can see that resorting to using the proxy distance makes us check
more candidate documents to achieve the same level of recall. In
other words relying on the proxy distance has a negative effect on
filtering effectiveness. In turn, this can drastically reduce overall
search efficiency.

The difference is bigger for Panel 3a, which corresponds to the
collection Comprehensive. A likely explanation of this difference
is the above-described disparity in query lengths between two col-
lections. In the case of Stack Overflow queries are long and there
is a bigger overlap between queries and answer documents. This is
why the similarity function that relies on a pure lexical match (in
this case BM25) allows us to find answers rather effectively. In the
case of Comprehensive a lexical overlap between queries and an-
swer documents is less likely, which can be, nevertheless, remedied
by enhancing BM25 model with Model 1 scores. However, when
Model 1 scores are excluded—by using the proxy distance function
to compute distance to pivots—this exclusion has a larger negative
effect for Comprehensive than for Stack Overflow.
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Figure 3: Filtering effectiveness of NAPP for original and a proxy distance function (when computing distances to pivots). The curves for the
original distance are blue while proxy distance curves are red. Filtering effectiveness is measured using via reduction in the number of distance
computations (larger is better). The left column has data for the distance BM25+Model 1 and the right column has data for BM25. Using 5K
queries from dev1 set.

Panels 3b and 3d show us what happens if the distance to pivots
is computed using Cosine TF×IDF instead of BM25. In this case,
such a replacement leads to a much larger performance deterioration
than removal of Model 1 scores. This is not surprising: As we
can see from Figure 2, there is a much bigger gap in effectiveness
between BM25 and Cosine TF×IDF than between BM25+Model 1
and BM25. Thus, replacing BM25 with Cosine TF×IDF has also
a larger negative effective on filtering effectiveness (than replacing
BM25+Model 1 with BM25).

4. DISCUSSION AND RELATED WORK
The k-NN search is an extensively studied area. For a detailed

discussion the reader is addressed to the surveys of metric [13] and
non-metric [61] access methods, as well to the recent survey of
hashing techniques [69].16

The k-NN search is a popular technique in IR and NLP, where
16In addition to the k-NN search, hashing techniques are often used
for near-duplicate detection [41], which consists in finding objects
with a high degree of similarity. It is a related but distinct problem,
which is often solved by applying high-precision low-recall tech-
niques [41]. However, these techniques are not applicable to broader
search tasks such as finding answers relevant to a given question.

the following two approaches are typically used. The first approach
relies on a term-based inverted index in retrieving documents that
share common terms with the query. These documents are further re-
ranked using some similarity function. Dynamic and static pruning
can be used to improve efficiency, sometimes at the expense of
decreased recall [67, 11, 15]. This approach supports arbitrary
similarity functions, but it suffers from the problem of the vocabulary
mismatch [4, 63, 23].

The second approach involves carrying out the k-NN search via
LSH [53, 65, 46, 37]. It is most appropriate for the cosine similarity.
For example, Li et al. [37] propose the following two-stage scheme
to the task of finding thematically similar documents. In the first
step they retrieve candidates using LSH. Next, these candidate are
re-ranked using the Hamming distance between quantized TF×IDF
vectors. Li et al. [37] find that their approach is up to 30× faster
than the classic term-based index while sometimes being equally
accurate.

Petrović et al. [53] applied a hybrid of LSH and the term-based
index to the task of the streaming First Story Detection (FSD). The
LSH keeps a large chunk of sufficiently recent documents, while the
term-based index keeps a small subset of recently added documents.
They report their system to be substantially faster than the state-of-



the-art system—which relies on the classic term-based index—while
being similarly effective. In a follow up work, Petrović et al. [54]
incorporate term associations into the similarity function. Their
solution relies on an approximation for the kernelized cosine simi-
larity. The associations are obtained from an external paraphrasing
database. Moran et al. [46] use the same method as Petrović et al.
[54], but find synonyms via the k-NN search in the space of word
embeddings (which works better for Twitter data). Moran et al. [46]
as well as Petrović et al. [54] calculate performance using an aggre-
gated metric designed specifically for the FSD task. Unfortunately,
they do not report performance gains using standard IR metrics such
as precision and recall.

Most importantly, as shown in the literature (see [72] and refer-
ences therein), similarity functions based on the cosine similarity
are not especially effective. In particular, compared to BM25, our
implementation of the TF×IDF cosine similarity finds 2× fewer an-
swers for any given rank N (see Figure 2). It is possible to improve
answer recall by increasing N . However, this has effect on search
module’ performance. In particular, if we retrieve top-N entries
using an approximate k-NN algorithm, as N increases, accuracy or
the efficiency of the search decreases. Simply speaking, it is eas-
ier to carry out an accurate 1-NN search than an accurate 500-NN
search.

One notable exception is a recent paper by Brokos et al. [9] who,
in contrast to our findings, learned that the cosine-similarity between
averaged word embeddings is an effective model for retrieving
Pubmed abstracts. However, they do not compare against standard
IR baselines such as BM25, which makes an interpretation of their
finding difficult.

We argue that instead of relying on the cheap cosine similarity it
may be better to employ an expensive but more accurate similarity
function. The exact brute force search using this function would be
expensive, but the cost could be reduced by applying an approximate
search method for generic—i.e., not necessarily metric—spaces.

A common approach to non-metric space indexing involves pro-
jecting data to a low-dimensional Euclidean space. The goal is to
find a mapping without a large distortion of the original similarity
measure. Jacobs et al. [29] review projection methods and argue that
such a coercion is often against the nature of a similarity measure,
which can be, e.g., intrinsically non-symmetric.

Among other factors, the lack of symmetry prevents us from
using the kernelized LSH [34, 47]. The only LSH variant that might
be directly applicable in our case is the Distance-Based Hashing
(DBH) [3], which uses randomly selected pivots to project points
to a one-dimensional space via FastMap [20]. The space is further
binarized so that approximately one half of data points are mapped
to one, and the other half is mapped to zero.

While a detailed comparison of pivoting approaches to DBH
is out the scope of the paper, we hypothesize that performance of
DBH—like performance of NAPP—depends on the choice of pivots.
In the case of NAPP, we have found that composing pivots from
randomly selected terms allows us to achieve substantially better
performance than selecting pivots randomly. Thus, engineering
pivots to support effective searching in a non-metric space seems to
be an important research area. Results obtained from this area will
likely benefit both DBH and NAPP.

Proximity graphs (see § 2.2) is another promising class of distance-
based methods, which are shown to be useful in non-metric spaces
[49]. In this work we employ the SW-graph [39], which works quite
well for dense vector spaces. However, it has been less useful for
BM25 and BM25+Model 1. We have not been able to understand
what causes the lack of performance, but this remains an important
research question as well.

Finally, we want to highlight the relationship of our approach
to indexing automatically learned features for QA [76]. Yao et al.
propose to automatically learn associations between a question type
and various linguistic annotations such as named entities and POS
tags [76]. For example, for a question “Who is the president of
the United States” an answer sentence contains a person name (a
named entity). Given a training corpus, we can automatically learn
associations and exploit them to guide the retrieval process. Techni-
cally, this requires indexing linguistic annotations and carrying out
a query expansion by adding expected annotations to the query.

For efficiency reasons, this works well only if we can find few
strong associations for a query. To demonstrate that this is not
true in the case of the vocabulary gap, we compute effectiveness of
BM25+Model 1 for varying sizes of the translation table. Specifi-
cally, we prune all the entries T (q|a) below a threshold. In addition,
we estimate the average number of non-zero translation entries
T (q|a) associated with a single query term. As a reference point
we also include data for BM25. We present results only for Compre-
hensive, because results for Stack Overflow are analogous.

Minimum
translation
probability

P@1
Number of
associated

terms

BM25 0.065 N/A
0.1 0.066 (+2.6%) 1700
0.05 0.070 (+8.6%) 3800
0.025 0.073 (+12.5%) 6200
0.005 0.077 (+19.3%) 12000
0.0025 0.079 (+21.6%) 15000

Table 5: Average number of terms associated with a query term at
various performance levels of BM25+Model 1 (estimated on dev2).
The first row represents a BM25 run.

According to Table 5, outperforming BM25 by about 20% re-
quires to keep more than 10K associations per query term (on aver-
age). This number is so high because frequent words, which tend to
appear in queries and text, are associated with many less frequent
words (i.e., respective translation probabilities are non-zero).

If we keep only translation entries with high (≥ 0.1) probabilities,
the improvement over BM25 is merely 2.6%. Yet, we still have to
keep nearly 2K associations per query term! This further corrobo-
rates the finding of Furnas et al. [24] that accurate retrieval requires
using a large number of term aliases, which is hard to implement us-
ing term-based indices. Yet, it is possible to do within a framework
of the k-NN search.

That said, the proposed methods are likely have limitations as
well. For example, for both data sets employed in our experiments,
the queries are quite long. It is not yet clear if k-NN can be applied
to shorter ad hoc queries, which are frequently submitted to Web
search engines.

5. CONCLUSION
In this paper we attempt to replace the classic term-based retrieval

with the k-NN search. To this end, we train a linguistically moti-
vated non-metric and non-symmetric similarity function: a weighted
combination of BM25 scores and IBM Model 1 log-scores. Then,
we demonstrate that it is possible to carry out an efficient and effec-
tive approximate k-NN search using this function.

An exact brute-force k-NN search using this similarity function
is slow. Yet, an approximate algorithm can be nearly two orders
of magnitude faster at the expense of only a small loss in accu-
racy. A retrieval pipeline using an approximate k-NN search can



be sometimes both faster and more accurate compared to the term-
based Lucene pipeline (see Table 3). The success of our approach
stems from the novel combination of existing methods and new
algorithmic tricks to compute IBM Model 1 efficiently.

While the k-NN search has been previously applied to IR and
NLP problems [53, 65, 37, 54, 46, 9], the previous work focuses
largely on the cosine similarity and LSH methods (see § 4 for a
discussion). This is the first successful attempt to apply a generic
k-NN search algorithm to a similarity function as challenging as
a combination of BM25 and IBM Model 1. In that, we find that
the cosine similarity alone (in particular, the cosine similarity be-
tween averaged word embeddings) lacks a lot in effectiveness (see
Figure 2).

The focus of our study is on techniques that bridge the vocabulary
gap. Yet, our methods are generic in the sense that they can be
used to model various types of semantic and syntactic mismatch [6,
76]. This opens up new possibilities for designing effective retrieval
pipelines.

Our software (including data-generating code) and derivative data
based on the Stack Overflow collection is available online.17
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