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Indexing Methods for Approximate Dictionary Searching:
Comparative Analysis

Leonid Boytsov

The primary goal of this paper is to survey state of the art indexing methods for approximate dictionary
searching. To improve understanding of the field, we introduce a taxonomy that classifies all methods into
direct methods and sequence-based filtering methods. We focus on infrequently updated dictionaries, which
are used primarily for retrieval. Therefore, we consider indices that are optimized for retrieval rather than
for update. The indices are assumed to be associative, i.e., capable of storing and retrieving auxiliary

information, such as string identifiers. All solutions are lossless and guarantee retrieval of strings within a
specified edit distance k. Benchmark results are presented for the practically important cases of k = 1, 2, 3.
We concentrate on natural language datasets, which include synthetic English and Russian dictionaries,

as well as dictionaries of frequent words extracted from the ClueWeb09 collection. In addition, we carry
out experiments with dictionaries containing DNA sequences. The paper is concluded with a discussion of
benchmark results and directions for future research.
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As computers are used in an ever-widening variety of
lexical processing tasks, the problem of error detection
and correction becomes more critical. Mere volume, if
nothing else, will prevent the employment of manual
detection and correction procedures.

Damerau [1964]

1. INTRODUCTION

Detection and correction of errors is a challenging task, which gave rise to a vari-
ety of approximate search algorithms. At present, these algorithms are used in spell-
checkers [Zamora et al. 1981; Kukich 1992; Brill and Moore 2000; Wilbur et al. 2006],
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computer-aided translation systems (e.g., Trados1), optical character recognition sys-
tems [Ford et al. 2001], spoken-text recognition and retrieval systems [Vintsyuk 1968;
Velichko and Zagoruyko 1970; Ng and Zue 2000; Glass 2003], computational biology
[Gusfield 1999; Ozturk and Ferhatosmanoglu 2003; Kahveci et al. 2004], phonology
[Covington 1996; Kondrak 2003], and for phonetic matching [Zobel and Dart 1996].
Approximate dictionary searching is important to computer security, where it can be
used to identify “weak” passwords susceptible to a dictionary attack [Manber and Wu
1994a]. Another important application is a detection of similar domain names that
are registered mostly for typo-squatting [Moore and Edelman 2010]. This is also fre-
quently required in disputes over almost identical domain names, particularly when
brand names are involved.2

Along with other sources of corrupt data, such as recognition of spoken and printed
text, a lot of errors are attributable to the human factor, i.e., cognitive or mechanical
errors. In particular, English orthography is notorious for its inconsistency and, there-
fore, poses significant challenges. For instance, one of the most commonly misspelled
words is “definitely”. Though apparently simple, it is often written as “definatly”
[Collins 2009].
An example of a frequent mechanical error is reversal of adjacent characters, known

as a transposition. Transpositions account for 2-13 percent of all misspelling errors
[Peterson 1986]. Therefore, it is important to consider transposition-aware methods.
Search methods can be classified into on-line and off-line methods. On-line search

methods include algorithms for finding approximate pattern occurrences in a text that
cannot be preprocessed and indexed. A well-known on-line search algorithm is based
on the dynamic programming approach [Sellers 1974]. It is O (n · m) in time and O(n)
in space, where n and m are the lengths of a pattern and a text, respectively. The on-
line search problem was extensively studied and a number of algorithms improving
the classic solution were suggested, including simulation of non-deterministic finite
automata (NFA) [Wu and Manber 1992b; Navarro and Raffinot 2000; Navarro 2001b],
simulation of deterministic finite automata (DFA) [Ukkonen 1985b; Melichar 1996;
Kurtz 1996; Navarro 1997b], and bit-parallel computation of the dynamic program-
ming matrix [Myers 1999; Hyyrö 2005].
However, the running time of all on-line search methods is proportional to the text

size. Given the volume of textual data, this approach is inefficient. The necessity of
much faster retrieval tools motivated development of methods that rely on text pre-
processing to create a search index. These search methods are known as off-line or
indexing search methods.
There are two types of indexing search methods: sequence-oriented methods and

word-oriented methods. Sequence-oriented methods find arbitrary substrings within
a specified edit distance. Word-oriented methods operate on a text that consists of
strings divided by separators. Unlike sequence-oriented methods, they are designed
to find only complete strings (within a specified edit distance). As a result, a word-
oriented index would fail to find the misspelled string “wiki pedia” using “wikipedia”
as the search pattern (if one error is allowed). In the case of natural languages – on
which we focus in this survey – this is a reasonable restriction.

The core element of a word-oriented search method is a dictionary. The dictionary is
a collection of distinct searchable strings (or string sequences) extracted from the text.
Dictionary strings are usually indexed for faster access. A typical dictionary index
allows for exact search and, occasionally, for prefix search. In this survey, we review

1http://trados.com
2A 2006 dispute on domains telefónica.cl and telefonica.cl resulted in court canceling the “accented” domain
version, because it was too similar to the original one [Zaliznyak 2006].
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associative methods that allow for an approximate dictionary search. Given the search
pattern p and amaximum allowed edit distance k, these methods retrieve all dictionary
strings s (as well as associated data) such that the distance between p and s is less than
or equal to k.

One approach to sequence-oriented searching also relies on dictionary matching.
During indexing, all unique text substrings with lengths in a given interval (e.g., from
5 to 10) are identified. For each unique substring s, the indexing algorithm compiles the
list of positions where s occurs in the text. Finally, all unique substrings are combined
into a dictionary, which is used to retrieve occurrence lists efficiently. Although this
method is not space efficient, it can be used for retrieval of DNA sequences.
The problem of index-based approximate string searching, though not as well stud-

ied as on-line string searching, attracted substantial attention from practitioners and
scientists. There are many experimental, open source, and commercial word-oriented
indexing applications that support approximate searching: Glimpse [Manber and Wu
1994b], dtSearch3, to name but a few. Other examples of software that employ approx-
imate dictionary searching are spell-checkers Ispell [Kuenning et al. 1988] and GNU
Aspell,4 as well as spoken-text recognition systems: SUMMIT [Zue et al. 1989; Glass
2003],5 Sphinx [Siegler et al. 1997],6 and HTK [Woodland et al. 1994].7.

Commonly used indexing approaches to approximate dictionary searching include
the following:

—Full and partial neighborhood generation [Gorin 1971; Mor and Fraenkel 1982; Du
and Chang 1994; Myers 1994; Russo and Oliveira 2005];

— q-gram indices [Angell et al. 1983; Owolabi and McGregor 1988; Jokinen and Ukko-
nen 1991; Zobel et al. 1993; Gravano et al. 2001; Carterette and Can 2005; Navarro
et al. 2005];

—Prefix trees (tries) [James and Partridge 1973; Klovstad and Mondshein 1975; Baeza-
Yates and Gonnet 1990; Ukkonen 1993; Cole et al. 2004; Mihov and Schulz 2004];

—Metric space methods [Baeza-Yates and Navarro 1998; Navarro et al. 2002; Fredriks-
son 2007; Figueroa and Fredriksson 2007].

There exist several good surveys on this topic [Hall and Dowling 1980; Peterson
1980; Kukich 1992; Owolabi 1996; Navarro 2001a; Navarro et al. 2001; Sung 2008],
yet, none addresses the specifics of dictionary searching in sufficient detail. We aim to
fill this gap by presenting a taxonomy of state of the art indexing methods for approx-
imate dictionary searching and experimental comparison results.

Paper organization. This paper can be divided into three parts: basic concepts, method
descriptions, and experiments, which are followed by conclusions and suggestions for
future work. Auxiliary material that is not critical for understanding the paper is pre-
sented in appendices.

We introduce terminology and formalize the problem in Section 2.1. In Section 2.2
we discuss the basics of the Levenshtein distance and its generalizations. In partic-
ular, we discuss the Damerau-Levenshtein distance, which treats transpositions as
basic edit operations. We also show that the commonly used formula for evaluating
the Damerau-Levenshtein distance does not satisfy the triangle inequality and can-
not be used with metric space methods directly. Instead, we note that the Damerau-

3In dtSearch documentation this feature is called fuzzy searching, see http://dtsearch.com.
4http://aspell.net
5http://groups.csail.mit.edu/sls/technologies/asr.shtml
6http://cmusphinx.sourceforge.net
7http://htk.eng.cam.ac.uk
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Levenshtein distance should be calculated using the algorithm suggested by Lowrance
and Wagner [1975].
Some of the surveyed methods rely on the projection of strings into a general vec-

tor space. Then original dictionary queries are substituted with frequency distance
queries in the projected space. This step gives the list of candidate strings, which are
compared with the pattern element-wise. Because frequency distance queries are sel-
dom discussed in the literature, we explain them in Section 2.3.

Section 2.2 and Section 2.3 can be skipped in a first reading. To understand most
of the material, it is sufficient to know that the Levenshtein distance is equal to the
minimum number of basic edit operations (i.e., insertions, deletions, and substitutions)
needed to transform one string into another. This function is a metric and satisfies
the axioms of a metric space. The Levenshtein distance can be lower bounded by the
frequency distance.
In Section 3 we outline the taxonomy that classifies all the indexing methods into

direct methods and sequence-based filtering methods. In Section 4 we briefly describe
exact search algorithms that are used as a part of approximate search methods. In
Section 5 we discuss efficient on-line (sequential) search methods and sketch an on-
line algorithm that serves as a comparison baseline for all indexing methods in our
experiments. In addition, it is embedded in many filtering methods. The description of
direct indexing methods is given in Section 6, while the description of indexing meth-
ods based on sequence filtering is given in Section 7. We also survey several hybrid
algorithms, which are discussed jointly with the other methods.

Experimental results are presented in Section 8. Section 9 concludes the paper.

2. BASIC CONCEPTS

2.1. Definitions and Assumptions

Let Σ = {Σi} be a finite ordered alphabet of the size |Σ|. A string is a finite sequence of
characters over Σ. The set of all strings of the length n over Σ is denoted by Σn, while
Σ∗ =

⋃∞
n=1 Σn represents the set of all strings.

Unless otherwise specified, we use p, s, u, v, w to represent arbitrary strings and
a, b, c to represent single-character strings, or simply characters. The empty string is
represented by ǫ. For any string s ∈ Σ∗ its length is denoted by |s|. A series of string
variables and/or character variables represents their concatenation.
To avoid confusion between string variables with indices and string characters, we

denote the i-th character of the string s by s[i]. A contiguous subsequence of string
characters is a substring. The substring of s that starts at position i and ends at posi-
tion j is denoted by s[i:j], i.e., s[i:j] = s[i]s[i+1] . . . s[j]. The reversed string, i.e., the string
s[n]s[n−1] . . . s[1], is denoted by rev(s).
Assume that the string s is represented as a concatenation of three possibly empty

substrings s1, s2, and s3, i.e., s = s1s2s3. Then substring s1 is a prefix of s, while sub-
string s3 is a suffix of s.
A substring of fixed size q is called q-gram (also known as n-gram). q-grams of sizes

one, two and three have special names: unigram, bigram, and trigram. Consider a
string s of the length n. We introduce function q-grams(s) that takes the string s and
produces a sequence of n − q + 1 q-grams contained in s:

q-grams(s) = s[1:q], s[2:q+1], . . . , s[n−q+1:n].

If n < q, q-grams(s) produces the empty sequence. It can be seen that q-grams(s) is
essentially a mapping from Σ∗ to the set of strings over the alphabet Σq, which is
comprised of all possible q-grams.

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article A, Publication date: 00.
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Table I: Notation

Concept Notation

Alphabet Σ
Set of strings of the length l over Σ Σl

Set of all strings over Σ Σ∗

Strings p (pattern), s, u, v , w
The empty string ǫ
String length (or the number of set elements) |s|
Single-character strings a, b, c
The i-th character of the string s s[i]

Substring of s that starts at position i and ends at
position j

s[i:j]

Operation that consists in deletion of the i-th char-
acter

∆i(s)

q-gram length q
The sequence of q-grams contained in the string s q-grams(s)
Reduced alphabet σ
Hash function h(s)
Cost of mapping u into v δ(u → v)
Set of basic edit operations B

Edit distance between s and p ED(s, p)
Dictionary W
Number of dictionary strings N
Number of dictionary strings of the length l N(l)
The largest N(l) for |l − n| ≤ k L(n, k) = max

|l−n|≤k
N(l)

Average length of dictionary strings λ
Maximum length of dictionary strings λm

Maximum allowed edit distance k
Size of the full k-neighborhood of p Uk(p)
Vectors x, y, z

Null (zero) vector ~0
Frequency vector of the string s (s can be also a
q-gram sequence)

vect(s)

Signature of string s (s can be also a q-gram se-
quence)

signat(s)

Frequency distance between vectors (or signa-
tures)

FD(x, y)

Distance in a general metric space d(x, y)
Maximum allowed distance in a general metric or
a vector space

R

Probability of event A Pr(A)

Iverson bracket [P ] =

{

1, if P is true
0, otherwise.
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The string s can be transformed into a frequency vector (we also use the term uni-
gram frequency vector). The frequency vector is a vector of size |Σ|, where the i-th el-
ement contains the number of occurrences of the i-th alphabet character in the string
s. The frequency vector produced by the string s is denoted by vect(s).
Because q-grams(s) is itself a string over the alphabet Σq, it can be also trans-

formed into a frequency vector vect(q-grams(s)). To distinguish it from the (unigram)
frequency vector obtained directly from the string s, we use the term q-gram frequency
vector.
A signature is a variant of a frequency vector. It is a binary vector of size |Σ|, where

the i-th element is equal to one, if and only if the i-th alphabet character belongs to s,
and is zero otherwise. The signature produced by the string s is denoted by signat(s).

The notation is summarized in Table I.
Several surveyed methods reduce the dimensionality of the search problem by pro-

jecting the original alphabet Σ to a smaller alphabet σ using a hash function h(c).
The alphabet σ is called a reduced alphabet (see Appendix B for a discussion of hash
functions). The hash function h(c) induces a character-wise projection from the set of
strings over the original alphabet Σ to the set of strings over the reduced alphabet σ
in a straightforward way. Given a string s of the length n, a corresponding projection
h(s) is given by:

h(s[1]s[2] . . . s[n]) = h(s[1])h(s[2]) . . . h(s[n]). (1)

One of the key concepts in this paper is an edit distance ED(p, s), which is equal to
the minimum number of edit operations that transform a string p into a string s. A
restricted edit distance is computed as the minimum number of non-overlapping edit
operations that make two strings equal (and do not act twice on the same substring).
If the edit operations include only insertions, deletions, and substitutions, it is the
Levenshtein distance. If, in addition, transpositions are included, it is the Damerau-
Levenshtein distance. The Hamming distance is a variant of the edit distance where
the only basic edit operations are substitutions.
The restricted Levenshtein distance is always equal to the unrestricted Levenshtein

distance, but this is not always the case for the Damerau-Levenshtein distance. We
continue the discussion of edit distances (and algorithms to compute them) in Section
2.2.
In the Introduction we define approximate dictionary searching as finding a set of

strings that match the pattern within k errors. Now we give formal definitions.

Definition 2.1. A dictionary W = (s1, s2, . . . , sN ) is an ordered set of strings, where
N is the number of dictionary strings.

Definition 2.2. Let p be a search pattern (query string) and k be a maximum al-
lowed restricted edit distance. Then the problem of approximate dictionary searching
consists in finding all indices i in W = (s1, s2, . . . , sN ) such that ED(si, p) ≤ k.

Note that Definition 2.2 employs a restricted distance. This definition also implies
that we consider associative methods that are capable of retrieving both strings and
associated data, such as string identifiers. Associated data is also known as satellite
data.
We use N(l) to denote the number of strings of the length l. The average and the

maximum length of a dictionary string are denoted by λ and λm, respectively. Note
that the total number of characters in dictionary strings is equal to λN .

Definition 2.3. The density of the dictionary is equal to N divided by
∑λm

n=0 |Σ|n. The
latter is the total number of possible strings over the alphabet Σ not longer than λm

characters.
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We informally call a dictionary dense, if its density is close to 1.
Depending on the type of edit distance used, we divide all methods into trans-

position-aware and transposition-unaware methods. Transposition-unaware methods
use the Levenshtein distance, while transposition-aware methods use the Damerau-
Levenshtein distance.

We consider a version of the problem where the dictionary is preprocessed to build
an index. The index is an auxiliary data structure that allows one to avoid examining
every dictionary string at search time and makes retrieval faster. We focus on methods
with indices optimized for retrieval rather than updating. However, we prefer methods
with indices that are updateable without rebuilding most of the structure.

2.2. Edit Distance

The history of edit distance begins with Damerau [1964] who presented misspelling
statistics and a method to correct a single misspelling. Damerau focused on single-
character insertions, deletions, substitutions, and transpositions, which accounted for
the majority of misspelling errors (about 80 percent) in a sample of human keypunched
texts. Independently, Levenshtein [1966] proposed a similarity function defined as as
the minimum number of insertions, deletions, and substitutions (but not transposi-
tions) required to obtain one string from another.

2.2.1. Edit Script and Basic Edit Operations. In a more general perspective, one string can
be transformed into another by a sequence of atomic substring transformations. This
sequence is an edit script (also known as a trace), while atomic substring transforma-
tions are basic edit operations. A basic edit operation that consists in mapping string u
into string v is represented by u → v (for simplicity of exposition, we omit specification
of exact positions where basic operations are applied). We denote the set of basic edit
operations by B.

Basic edit operations are usually restricted to the following set of single-character
operations:

— Insertion: ǫ → b;
—Deletion: a → ǫ;
— Substitution: a → b (replacement);

In some cases, B is expanded to include transpositions, which consist in reversal of
adjacent characters: ab → ba.

PROPERTY 2.4. We assume that B satisfies the following:

— If u → v ∈ B, then the reverse operation v → u also belongs to B (symmetry);
— a → a ∈ B (single-character identity operations belong to B);
—B is complete: for any two strings p and s there always exists an edit script that trans-

forms p into s.

Note that B is not necessarily finite.

2.2.2. Definition of Edit Distance. Similarity of two strings can be expressed through the
length of an edit script that makes strings equal:

Definition 2.5. Given a set of basic edit operations, the edit distance ED(p, s) is
equal to the length of a shortest edit script that transforms string p into string s. A
shortest script that transforms p into s is an optimal edit script. If the set of basic edit
operations contains only insertions, deletions, and substitutions, it is the Levenshtein
distance (an identity operation is a special case of substitution). If, in addition, the
set of basic edit operations includes transpositions, it is the Damerau-Levenshtein
distance.
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The edit distance can be interpreted as the minimum cost at which one string can be
transformed into another. It can be generalized in two ways. First, basic edit operations
can be assigned individual costs δ(a → b) [Wagner and Fischer 1974]. We extend the
cost function δ() to an edit script E = a1 → b1, a2 → b2, . . . , a|E| → b|E| by defining

δ(E) =
∑|E|

i=1 δ(ai → bi). We now let the distance from a string p to a string s be the
minimum cost of all edit scripts that transform p into s. This edit distance variant is
commonly referred to as a generalized Levenshtein distance.

Second, the set of basic edit operations B can be expanded to allow weighted sub-
stitutions of arbitrary strings rather than single-character edit operations [Ukkonen
1985a; Veronis 1988]. This variant is termed as an extended edit distance. For example,
B may contain a unit cost operation x → ks. Then the extended edit distance between
strings “taxi” and “taksi” is equal to one, whereas the regular Damerau-Levenshtein
distance is equal to two. It is also possible to make cost function δ() conditional on
substring positions [Brill and Moore 2000].

Definition 2.6. Given a set of basic edit operations B and a function δ(), which as-
sign costs to all basic edit operations from B, the generic edit distance between strings
p and s is defined as the minimum cost of an edit script that transforms p into s.

PROPERTY 2.7. We assume that the cost function δ(u → v) satisfies the following:

— δ(u → v) ∈ R (the cost function is real valued)
— δ(u → v) = δ(v → u) (symmetry)
— δ(u → v) ≥ 0, δ(u → u) = 0, and δ(u → v) = 0 ⇒ u = v (positive definiteness)
— ∀γ > 0 the set of basic operations {u → v ∈ B | δ(u → v) < γ} is finite (finiteness of a

subset of basic edit operations whose costs are bounded from above)

Note that the last property holds automatically for finite B.

THEOREM 2.8. From Properties 2.4 and 2.7 it follows that

—For any two strings p and s, there exists a script with the minimum cost, i.e., the edit
distance from p to s is properly defined.

—The generic edit distance described by Definition 2.6 is a metric [Wagner and Fischer
1974].

The proof is outlined in Appendix D.1.
The edit distance is a metric even if the cost function δ() is not subadditive. Moreover,

because a sequence of overlapping operations that transforms u into v may have a
smaller cost than δ(u → v), δ(u → v) may be greater than ED(u, v). Consider, for
example, the alphabet {a, b, c}where the symmetric and non-subadditive δ() is defined
in the following way:

δ(a → c) = δ(b → c) = 1
δ(a → ǫ) = δ(b → ǫ) = δ(c → ǫ) = 2

δ(a → b) = 3.

It can be seen that 3 = δ(a → b) > δ(a, c) + δ(c, b) = 2. That is the optimal edit script
(a → c, c → b) transforms “a” into “b” at cost two.

2.2.3. Restricted Edit Distance. Subadditivity of edit distance makes it possible to use
edit distance with metric space methods, such as the Burkhard-Keller tree (BKT)
[Burkhard and Keller 1973]. Nonetheless, a problem of minimization over the set of
all possibly overlapping edit operations may be hard. To offset computational complex-
ities, a similarity function defined as the minimum cost of a restricted edit script is
commonly used. The restricted edit script does not contain overlapping edit operations

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article A, Publication date: 00.
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and does not modify a single substring twice. We refer to corresponding edit distance
as the restricted edit distance.

OBSERVATION 2.9. Any unrestricted edit distance is a lower bound for the corre-
sponding restricted edit distance.

OBSERVATION 2.10. The restricted unit-cost Levenshtein distance is equal to the
unrestricted unit-cost Levenshtein distance.

A proof immediately follows from the observation that an optimal edit script contains
single-character deletions, insertions, or substitutions that never modify a character
twice.

OBSERVATION 2.11. The unrestricted Damerau-Levenshtein distance and the re-
stricted Damerau-Levenshtein distance are different functions. Furthermore, the re-
stricted Damerau-Levenshtein distance is not a metric, because it is not subadditive.

PROOF. Damerau-Levenshtein distance treats transposition (i.e., two-character re-
versal of adjacent characters) as a basic edit operation. To prove the claim, we consider
an example where prohibition on modification of already transposed characters distin-
guishes restricted and the unrestricted Damerau-Levenshtein distance.

Let us consider strings “ab”, “ba”, and “acb”. On one hand, the shortest unrestricted
edit script that transforms “ba” into “acb” (ba → ab, ǫ → c) contains two operations:
first, it swaps a and b, and then it inserts c between them. Note that the insertion
changes the already modified string. However, if subsequent modifications are ruled
out, a shortest edit script that transforms “ba” into “acb” (e.g., b → ǫ, ǫ → c, ǫ → b)
contains three edit operations. Thus, the unrestricted edit distance is equal to two,
while the restricted distance is equal to three.

The Damerau-Levenshtein distance from “ab” to “ba” as well as from “ab” and “acb”
is equal to one. Therefore, restricted Damerau-Levenshtein distance does not satisfy
the triangle inequality because

2 = ED(ab, ba) + ED(ab, acb) < ED(ba, acb) = 3

�

2.2.4. Optimal Alignment. The problem of efficient computation of the unrestricted
Damerau-Levenshtein function was solved by Lowrance and Wagner [1975]. In what
follows, we give formal definitions and survey the classic dynamic programming algo-
rithm for the computation of the Levenshtein distance and its extension suggested by
Lowrance and Wagner [1975].

Let strings p and s be partitioned into the same number of possibly empty substrings:
p = p1p2 . . . pl and s = s1s2 . . . sl, such that pt → st ∈ B. Additionally we assume that
pt and st cannot be empty at the same time. We say that this partition defines an
alignment A = (p1p2 . . . pl, s1s2 . . . sl) between p and s, in which substring pt is aligned
with substring st.

The alignment represents the restricted edit script E = p1 → s1, p2 → s2, . . . , pl → sl.
We define the cost of alignment A as the cost of corresponding edit script and denote it
as δ(A):

δ(A) =
l
∑

t=1

δ(pt → st) (2)

An optimal alignment is an alignment with the minimum cost.

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article A, Publication date: 00.
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Fig. 1: An alignment of strings “wadr” and “sword”

ǫ w a dr
l l l l
s w o rd

An example of an optimal alignment between strings “wadr” and “sword” is presented
in Figure 1. The corresponding edit script consists of insertion ǫ → s, substitution
a → o, and transposition dr → rd.

It can be also seen that there exists a one-to-one mapping between a set of restricted
edit scripts and a set of alignments: each restricted edit script with the minimum
cost represents an alignment with the minimum cost and vice versa. Thus, we can
substitute the task of finding optimal restricted edit distance with the task of finding
the cost of the optimal alignment.

2.2.5. Edit Distance Computation. The dynamic programming algorithm to compute the
cost of an optimal alignment was independently discovered by several researchers
in various contexts, including speech recognition [Vintsyuk 1968; Velichko and
Zagoruyko 1970; Sakoe and Chiba 1971] and computational biology [Needleman and
Wunsch 1970] (see Sankoff [2000] for a historical perspective). Despite the early discov-
ery, the algorithm was generally unknown before a publication by Wagner and Fischer
[1974] in a computer science journal.
The main principle of the algorithm is to express the cost of alignment between

strings p and s using costs of alignments between their prefixes. Consider the prefix
p[1:i] of the length i and the prefix s[1:j] of the length j of strings p and s, respectively.
Assume that A = (p1p2 . . . pl, s1s2 . . . sl) is an optimal alignment between p[1:i] and s[1:j],
whose cost is denoted by Ci,j .

Using Equation (2) and the definition of optimal alignment it is easy to show that
Ci,j can be computed using the following generic recursion [Ukkonen 1985a; Veronis
1988]:8

C0,0 = 0
Ci,j = min{δ(p[i′:i] → s[j′:j]) + Ci′−1,j′−1 | p[i′:i] → s[j′:j] ∈ B} (3)

Recursion (3) is an example of a dynamic programming solution. The set of (|p|+ 1) ·
(|s|+1) numbers {Ci,j} is commonly referred to as a dynamic programming matrix (or
shortly DP matrix). It can be also seen that:

—The cost of alignment between strings p and s is equal to C|p|,|s|;
—All optimal alignments can be recovered by backtracking through Recursion (3).

Let us now consider the case of Levenshtein distance, where p[i′:i] → s[j′:j] is a unit-
cost single character insertion, deletion, or substitution. Therefore,

δ(p[i′:i] → s[j′:j]) = [p[i′:i] 6= s[j′:j]],

where [X] is equal to one, if condition X is true and is zero otherwise. Furthermore,
there are three possible combinations of i′ and j′, which correspond to deletion, inser-
tion, and substitution, respectively:

— i′ = i − 1 and j′ = j.
— i′ = i and j′ = j − 1;
— i′ = i − 1 and j′ = j − 1.

8We also suppose that this simple generalization was independently discovered by many other researchers.
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Considering these simplifications, we can rewrite generic Recursion (3) for Leven-
shtein distance as follows:

Ci,j = min











0, if i = j = 0
Ci−1,j + 1, if i > 0
Ci,j−1 + 1, if j > 0
Ci−1,j−1 +

[

p[i] 6= s[j]

]

, if i, j > 0

(4)

It can be seen that the DP matrix can be computed by a column-wise top-down
traversal (one column at a time) or by row-wise left-to-right traversal (one row at a
time) in O(|p| · |s|) time and space. The cost of optimal alignment alone can be com-
puted in O(|p| · |s|) time and O(min(|p|, |s|)) space (the algorithm has to remember only
last column or row to compute a new one) [Navarro 2001a].

According to Observation 2.10, the unrestricted Levenshtein distance is equal to
restricted Levenshtein distance. The restricted edit distance, on the other hand, is
equal to the cost of an optimal alignment. Therefore, Recursion (4) calculates the unre-
stricted Levenshtein distance. A common misconception is that the following straight-
forward generalization of Recursion (4) correctly computes the unrestricted Damerau-
Levenshtein distance in all cases:

Ci,j = min



















0, if i = j = 0
Ci−1,j + 1, if i > 0
Ci,j−1 + 1, if j > 0
Ci−1,j−1 +

[

p[i] 6= s[j]

]

, if i, j > 0
Ci−2,j−2 + 1, if p[i] = s[j−1], p[i−1] = s[j] and i, j > 1

(5)

However, Recursion (5) evaluates only the restricted edit distance, which is not always
equivalent to the unrestricted edit distance. For instance, the distance between strings
“ba” and “acb” computed using Recursion (5) is equal to three, while the unrestricted
Damerau-Levenshtein distance between these strings is equal to two.

As shown by Lowrance and Wagner [1975], the unrestricted Damerau-Levenshtein
distance can be calculated as the cost of the restricted edit distance (i.e., the cost of an
optimal alignment), where B consists of unit-cost single-character insertions, deletions,
substitutions, and operations aub → bva at the cost |u| + |v| + 1.9 Given this definition,
generic Recursion (3) can be rewritten for Damerau-Levenshtein distance as follows
[Lowrance and Wagner 1975]:

Ci,j = min































0, if i = j = 0
Ci−1,j + 1, if i > 0
Ci,j−1 + 1, if j > 0
Ci−1,j−1 + [pi 6= sj ], if i, j > 0

min
0 < i′ < i, 0 < j′ < j
p[i] = s[j′], p[i′] = s[j]

Ci′−1,j′−1 + (i − i′) + (j − j′) − 1

(6)

In addition, Lowrance and Wagner demonstrated that the inner minimum in Re-
cursion (6) is achieved at the largest i′ < i and j′ < j that satisfy p[i] = s[j′] and
p[i′] = s[j]. Lowrance and Wagner proposed an algorithm to compute Recursion (6) in
O(|p| · |s|) time. Their solution takes advantage of the fact that the DP matrix is com-
puted row-wise top-down (or column-wise left-to-right), which allows us to find i′ and

9Note that we can restrict the set of operations {aub → bva} to the subset {aub → bva |u = ǫ or v =
ǫ}. If both |u| ≥ 1 and |v| ≥ 1, aub can be transformed into bva using max(|u|, |v|) + 2 ≤ |u| + |v| + 1
insertions, deletions, and substitutions. Thus, there is an alternative optimal edit script that does no contain
the operation aub → bva.
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j′ that satisfy p[i] = s[j′] and p[i′] = s[j] iteratively, using only additional |Σ|+1 counters.
See the pseudo-code in Appendix D.3 or the article by Lowrance of Wagner [1975] for
details.

2.3. Frequency Distance

Consider a dataset comprised of m-dimensional vectors. Given query vector z, the prob-
lem of approximate vector space searching consists in finding elements similar to z.
Depending on the definition of similarity, the problem has several variations, among
which satisfying partial match queries and region queries (also known as orthogonal
range queries) received most attention. The problem of satisfying frequency-distance
queries is less known, but it provides the basis for several filtering string search meth-
ods.
The frequency distance originates from the concept of counting filter introduced by

Grossi and Luccio [1989] for the purpose of substring matching. This concept was
improved by several other researchers including Jokinen et al. [1996] and Navarro
[1997a].
Grossi and Luccio proved the following: if the pattern p matches a substring t[i:j]

with at most k errors, then the substring t[j−|p|+1:j] includes at least |p| − k characters
of p (with multiple occurrences accounted for).
In the case of complete word matching, the counting filter can be used reciprocally: if

ED(p, s) ≤ k, then the string p should contain at least |s|−k characters from the string
s and the string s should contain at least |p| − k characters from the string |p|. The
reciprocal counting filter was described by Kahveci and Singh [2001]. In what follows,
we give a formal definition of the frequency distance and explain its relation to the edit
distance.

2.3.1. Definition of Frequency Distance. The positive frequency distance FD+(x, y) and
negative frequency distance FD−(x, y) between x and y are defined by the following
formulae:

FD+(x, y) =
∑

xi>yi

xi − yi =

m
∑

i=1

[xi > yi] · (xi − yi) (7)

FD−(x, y) =
∑

xi<yi

yi − xi =
m
∑

i=1

[xi < yi] · (yi − xi), (8)

where [X] is equal to one if condition X is true and is zero otherwise. FD(x, y) =
max(FD+(x, y),FD−(x, y)) is frequency distance.10

2.3.2. Relationship to Edit Distance. Given strings p and s, the frequency distance be-
tween the corresponding unigram frequency vectors vect(p) and vect(s) is a lower
bound for both the restricted and unrestricted edit distance between p and s [Kahveci
and Singh 2001]:

FD(vect(p), vect(s)) ≤ ED (p, s) (9)

Inequality (9) indicates that the problem of approximate dictionary search can be
reduced to searching in a vector space. In this approach a string is represented by
its unigram frequency vector. Because frequency distance between unigram frequency

10It is indeed a distance, which follows from the equation FD(x, y) = (|dM (x,~0) − dM (y,~0)| + dM (x, y))/2,

where dM (x, y) =
P

i
|xi −yi| is Manhattan distance, and ~0 represents the null vector all of whose elements

are zero.
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vectors is a lower bound for the edit distance between respective strings, we can pro-
cess unigram frequency distance queries in the vector space with the same threshold
value k. Given the pattern p and the maximum allowed edit distance k, the search
procedure finds all strings such that:

FD(vect(p), vect(s)) ≤ k.

Note that the projection of strings to the corresponding frequency vectors does not pre-
serve edit distance: for instance, ED(abc, bca) = 2, whereas FD(vect(abc), vect(bca)) =
0. Therefore, a search in the vector space may not satisfy a query accurately; rather, it
would provide a candidate list, which needs to be verified element-wise using the edit
distance.

Mapping strings to frequency vectors is an example of a filtering method that con-
sists in using a less computationally expensive algorithm to filter out the majority of
data elements.

In this survey, we use frequency vectors to demonstrate the principles of searching
in a vector space using the frequency distance. Because

FD(signat(p), signat(s)) ≤ FD(vect(p), vect(s)),

the presented properties are also valid in the signature-based vector space searching.
In particular, one can see that the frequency distance between string signatures is also
a lower bound for the edit distance between respective strings.

2.3.3. Threshold for Searching in Vector Spaces. A frequency distance between unigram
frequency vectors is always a lower bound for the edit distance between respective
strings, see Inequality (9). This property, however, does not hold for q-gram frequency
vectors if q > 1. Therefore, if we transform strings to q-gram frequency vectors, we
have to choose a larger threshold for searching in the vector space. In what follows, we
calculate this threshold.

Each string s can be represented by a sequence of q-grams s[1:q], s[2:q+1], . . . , s[n−q+1:n]

contained in it. This sequence is itself a string over the alphabet Σq, which we have
denoted by q-grams(s). If q = 1, then q-grams(s) = s.
Consider strings p and s and their respective q-gram sequences: q-grams(p)

and q-grams(s). Let these q-gram sequences be converted to frequency vectors
vect(q-grams(p)) and vect(q-grams(s)). Since q-gram sequences are strings over alpha-
bet Σq, from Inequality (9) it follows that the frequency distance between two q-gram
frequency vectors lower bounds the edit distance between respective q-gram sequences:

FD(vect(q-grams(p)), vect(q-grams(s))) ≤ ED(q-grams(p), q-grams(s)) (10)

For q > 1, a basic edit operation may change more than one q-gram. According to
Jokinen and Ukkonen [1991], the number of q-grams modified by a single insertion,
deletion, or substitution is at most q. It can be also seen that a single transposition can
modify up to (q + 1) q-grams.11

Combining these observations and Inequality (10), we obtain the following maxi-
mum allowed frequency distance for searching in the vector space:

k × (q + [transposition-aware and q > 1]), (11)

where k is the maximum allowed edit distance.

11Consider, for example, string “abcd” and transposition bc → cb, which modifies all three bigrams of the
string.
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Fig. 2: Taxonomy of search methods
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3. TAXONOMY OUTLINE

In order to improve understanding of the field, we introduce a taxonomy of approxi-
mate search methods. It is an extension of the taxonomy of Navarro et al. [2001], who
suggest to classify approximate search methods into neighborhood generation, parti-
tioning into exact searching, and intermediate partitioning methods. In this survey, all
indexing methods are divided into two main groups:

—Direct methods;
— Sequence-based filtering methods.

Each category can be further subdivided based on characteristics specific to the method
type.

Direct search methods look for complete patterns. They include: prefix trees, neigh-
borhood generation, and metric space methods. A neighborhood generation method
constructs a list of words within a certain edit distance from a search pattern. Then
the words from this list are searched for exactly. Both prefix trees and most metric
space methods recursively decompose a dictionary into mutually disjoint parts, i.e.,
they create a hierarchy of space partitions. A search algorithm is a recursive traversal
of the hierarchy of partitions. At each recursion step, the search algorithm determines
whether it should recursively enter a partition or backtrack, i.e., abandon the partition
and return to a point where it can continue searching. Such a decision is made on the
basis of proximity of the search pattern and strings inside the partition.

A filtering search method has a filtering step and a checking step. During the filter-
ing step, the method builds a set of candidate strings. The checking step consists in
element-wise comparison of the search pattern and candidate strings. Most filtering
methods compute the edit distance between a candidate string s and the search pat-
tern p to discard strings s such that ED(p, s) > k. Alternatively, it is possible to use a
fast on-line algorithm, which essentially applies a second filter.

Filtering algorithms can be characterized by a filtering efficiency. It is informally
defined as a fraction of dictionary strings that are discarded at the filtering step. A
complementary measure is filtering inefficiency, which is defined as one minus filtering
efficiency. Filtering inefficiency is computed as the average number of verifications
during the checking step divided by the number of dictionary strings.

Sequence-based filtering methods employ short string fragments to discard non-
matching strings without evaluating the edit distance to a search pattern directly.
We call these fragments features. Sequence-based filtering methods can be divided
into pattern partitioning and vector-space methods. Pattern partitioning methods rely
on direct indexing of and searching for string fragments, e.g., using an inverted file.
Vector-space methods involve conversion of features (usually q-grams and unigrams)
into frequency vectors or signatures. Then frequency vectors and signatures are in-
dexed using general vector space methods.

In addition, there are hybrid methods that integrate several access methods to im-
prove retrieval time. Many hybrid methods also rely on filtering. Hybrid methods are
very diverse: we do not discuss them separately from other algorithms.
The taxonomy of search methods is presented in Figure 2.12 In the following sections,

we discuss search methods in detail, starting with a brief description of exact search
and sequential search algorithms that are used as a part of indexing search methods.

12Note that in some cases, provided references describe sequence-oriented search methods or search meth-
ods that do not use the edit distance. However, the presented ideas can be also applied to dictionary search
methods with the edit distance.
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4. EXACT SEARCHING

There are two mainstream approaches to exact string searching: hashing and tries.
Tries allow one to find the pattern p in O(|p|) time in the worst case. Unlike tries,
most hashing methods have retrieval time proportional to the pattern length only on
average.
Tries may or may not be faster than hashing methods depending on a dataset, envi-

ronment and implementation specifics. For instance, our implementation of a full trie
slightly outperforms a hashing implementation supplied with a GNU C++ compiler
for all natural language datasets used in our tests. However, hashing is about twice as
fast as a full trie implementation for DNA data. It is also about 2-3 times faster than
our path-compressed implementation of a trie (see Section 4.2 below for a description
of trie variants).
The advantage of tries is that they efficiently support a prefix query, i.e., a request

to find all strings that have a specified prefix. A related search problem consists in
finding all occurrences of a substring p in a string s. This problem can be solved with
the help of suffix trees or suffix arrays. In the following sections, we briefly discuss
hashing, tries, suffix trees, and suffix arrays.

4.1. Hashing

Hashing is a well-known method extensively covered in the literature, see, e.g., [Knuth
1997] for a detailed discussion. An underlying idea is to map strings to integer num-
bers from 1 to some positive integer M with the help of a hash function. Given a storage
table of size M (known as a hash table) and a hash function h(s), the string s is stored
in the cell number h(s). Associated data can be stored together with the string.
A situation when two (or more strings) are mapped to the same cell is called a col-

lision. There are two main methods to resolve collisions. The first method is chaining.
It involves storing collided strings in the form of a list. The second method consists in
finding a free cell other than h(s) using a predetermined rule, also known as a probe
sequence. This method is called open addressing. If no free cell can be found, the hash
table is resized and its elements are reallocated.
These classic methods are fast only on average. Perfect hashing eliminates collisions

by constructing a hash function that maps no pair of dictionary strings to the same
number [Fredman et al. 1984]. Perfect hashing retrieves the pattern p in O(|p|) time
in the worst case. It works best for static dictionaries, but there are also dynamic
modifications [Dietzfelbinger et al. 1994]. An alternative method that finds the pattern
in O(|p|) worst-case time is cuckoo hashing [Pagh and Rodler 2001].
A straightforward implementation of hashing based on open addressing is not space-

economical. To efficiently resolve collisions, the table should be big enough so that a
significant fraction, e.g., one half, of all cells are empty. It is possible to trade space for
performance through resolving collisions via chaining.
In the case of static dictionaries, one can employ a minimal perfect hashing [Botelho

et al. 2007]. A minimal perfect hash function h(s) maps a set of M strings to the num-
bers from 1 to M without collisions. Assume that dictionary strings si are stored in in-
creasing order of the values of the minimal perfect hash function h(si). Then the hash
table contains a sequence of increasing string offsets, which can be efficiently com-
pressed. The most efficient compression can be achieved with the help of a prefix-sum
data structure [Elias 1974; Raman et al. 2007]. It requires at most N(log2 λ+C)+o(N)
bits of storage, while allowing one to retrieve the i-th string offset in constant time (λ
is the average length of a dictionary string and C ≤ 2 is a small constant).
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Fig. 3: Three modifications of tries storing keys: “best”, “tree”, and “trie”

4.2. Trie

A trie (or a prefix tree) is a tree where strings with common prefixes are grouped into
subtrees. Edges of the prefix tree have string labels. Each node ξ is associated with the
string s, formed by concatenating labels on the way from the root to ξ. It is common to
say that ξ spells the string s. The level of the node ξ is the length of the string s. Tries
can answer prefix queries in a straightforward way.

For simplicity of exposition, we assume that the dictionary W is prefix-free: no string
in W is a proper prefix of another string. This condition can be ensured by extending
an alphabet with a special character $ and appending it to every string in the set. In a
prefix-free dictionary, only a leaf spells a complete dictionary string, while an internal
node spells a proper prefix of a dictionary string.

Tries have three main modifications, which are presented in Figure 3. In a complete
trie (full trie) every label is exactly one character long and all characters are stored
in the tree, without omissions (see Panel (a) in Figure 3). A representation of a com-
plete trie has many pointers to child nodes, which is not space-efficient. A number of
compression methods have been proposed in the literature.

Path compression is an early lossless compression algorithm that consists in merg-
ing of single-child nodes with their children. Consider a sequence of nodes ξ1, ξ2, . . . , ξl,
i.e., a path, with edges labeled with strings s1, s2, . . . , sl such that ξi+1 is the only child
of ξi for each i < l. This path can be compressed by replacing nodes {ξi} and respective
edges with a single node. This node has a single outgoing edge labeled by the string
s1s2 . . . sl. It can be seen that a path-compressed trie has fewer pointers than the cor-
responding complete trie. See Panel (b) in Figure 3 for an example.
Level compression is a more recent method [Nilsson and Karlsson 1999]. Consider

a complete trie, where a node at level l and all of its descendants at levels l + 1, l +
2, . . . , l + m − 1 have exactly |Σ| children, i.e., one child per alphabet character. Then
we can replace these nodes with a single node of degree |Σ|m. Level compression works
well for binary tries and/or DNA , however, it is not very useful in the case of large
alphabets and natural languages, where tries are usually sparse (see Figure 4).

A PATRICIA trie [Morrison 1968; Gwehenberger 1968] is an example of a lossy com-
pression method, where each label s of a path-compressed trie is replaced with its first
character s[1] and label length |s|, also known as a skip value. See Panel (c) in Figure
3 for an example (skip values are depicted in circles). Because the PATRICIA trie is
based on lossy compression, the search algorithm should refer to the original data to
avoid false positives (only one verification is needed for each string found).
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Fig. 4: The average number of children per trie level (Synthetic English data, 3.2M strings)
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A number of compression methods rely on storing trie nodes in a pre-specified traver-
sal order. Consider, for example, a recursive traversal procedure that visits trie nodes
level-wise in increasing order of levels. The nodes of the same level are visited in in-
creasing alphabetic order of strings they spell.
Assume that nodes of the trie are stored in memory in order of their traversal as

records of the same size. Let, in addition, the record of node ξ (of level l) contain the
following data:

—The bitmask of size |Σ|, where the i-th bit is equal to one if ξ has an outgoing edge
labeled with Σi;

— The total number of children of all nodes at level l that are stored prior to ξ.

If, in addition, there is an array of pointers to the first node of each level, this data
unambiguously defines locations of all trie nodes.
The data structure described is known as C-trie [Maly 1976]. C-trie achieves

a compact representation by essentially sharing pointers among children. It uses
N(|Σ|+log2 N) bits of space, which is often less than the size of the dictionary.13 Benoit
et al. [2005] proposed a more compact data structure that employs storing trie nodes
in a traversal order. It uses only N(⌈log2 |Σ|⌉ + 2) + o(N) + O(log log |Σ|) bits, which
is close to the information theoretic lower bound. Such compact trees are often called
succinct.
A disadvantage of all methods that rely on a traversal-order trie representation is

that updates can be expensive. Consider, for example, a C-trie such that no string
contains character “a” and m is the maximum length of the stored strings. Consider
also the string s = “aa...a” of the length m: the string s does not belong to the trie. It
can be seen that an insertion of s requires an update of every C-trie node.
Another compression method is based on the observation that many subtrees in tries

are isomorphic. Therefore, we can keep only one instance of isomorphic subtrees and
replace the other instances with a pointer to the unique representative. As a result,
the dictionary can be represented by a compact finite state machine, which can be com-
puted efficiently and incrementally [Daciuk et al. 2000]. A drawback of this approach
is that a single final state might correspond to several dictionary strings. Therefore,
the data structure is not associative and cannot store auxiliary information such as
string identifiers.

13For instance, consider a Russian dictionary containing less than four million entries. Because |Σ| = 33
and log2 N < 22, storage requirement of C-trie is approximately 55 bits (or seven bytes) per string, while
the average length of the dictionary string is about 10 characters.
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4.3. Suffix Tree and Suffix Array

Because the trie supports prefix queries, it is possible to efficiently answer substring
queries on a string s by storing all suffixes of s in the trie. Typically the PATRICIA trie
is used. The resulting data structure is called a suffix tree.

The suffix tree can be constructed in linear space and time with respect to the string
length [Weiner 1973; McCreight 1976; Ukkonen 1995]. A classic, i.e., not compressed,
implementation of a suffix tree requires as much as 8-10 bytes per character on average
[Kurtz 1999; Giegerich et al. 2003].

A more space-economical variant of a suffix tree is a suffix array, which is essentially
a sorted array of string suffixes [Manber and Myers 1990]. More specifically, a suffix
array of the string s is a sorted array of starting positions i of suffixes s[i:|s|]. This
array is sorted the lexicographic order with respect to s[i:|s|]. Assuming that an integer
requires 4 bytes of the storage, a suffix array uses at least 4 bytes per character, which
is still a big overhead.14

There exist compressed versions of suffix arrays [Grossi and Vitter 2005] and suffix
trees [Sadakane 2007; Russo et al. 2008; Fischer et al. 2008; Russo et al. 2009]. The
proposed methods have a wide range of space-time tradeoffs: the most compact indices
require space comparable to the size of the compressed source data, however, they are
also the slowest ones (see [Cánovas and Navarro 2010] for experimental comparisons).
Suffix trees and suffix arrays can be used to answer substring dictionary queries in

a straightforward way. The solution consists in appending a special separator charac-
ter $ to every dictionary string, concatenating all dictionary strings, and subsequent
indexing using a suffix tree or array (see, e.g., [Bieganski et al. 1994]).

A permuted lexicon is another method that supports substring searching [Zobel
and Dart 1995]. In addition, this method allows one to efficiently answer prefix-suffix
queries, i.e., requests to find all dictionary strings in the form u*v, where the wildcard
“*” represents any (possibly empty) string.

The indexing algorithm of the permuted lexicon involves appending the separator
to every dictionary string and indexing all its cyclic rotations. For example, a string
“beta” would be represented by “beta$”, “eta$b”, “ta$be”, “a$bet”, and “$beta”.

A naive implementation of this method that actually stores all cyclical string rota-
tions, e.g., using hashing, is space-inefficient. A more compact data structure is essen-
tially a suffix array: a pointer to the character s[i] in the text representation of the
dictionary corresponds to the string s rotated by i characters. Note that the pointers
are to be sorted by their respective rotations. This is different from the suffix array
built over concatenated dictionary strings, where pointers are sorted by the suffixes of
the string produced via concatenation.

A compressed form of the permuted lexicon was recently proposed by Ferragina
and Venturini [2007]. Their method employs the Burrows-Wheeler transform, which
sorts cyclical rotations of the string obtained by concatenating $-separated dictionary
strings.

5. SEQUENTIAL SEARCHING

The checking step of several filtering methods involves verification of whether the edit
distance between a candidate string s and the search pattern p does not exceed k. A
straightforward implementation of the checking step would involve computation of the
dynamic programming matrix (see Section 2.2.5). The dynamic programming approach
is unexcelled in flexibility. However, in the domain of approximate string searching for

14Manber and Myers [1990] also describe implementations that require more space.
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short patterns and limited number of errors, this flexibility is largely unclaimed, not
to mention its high computational costs.
Because for most surveyed methods it is not necessary to calculate an accurate value

of the edit distance, the dynamic programming algorithm can be modified to compute
only 2k + 1 main diagonals of the dynamic programming matrix [Ukkonen 1985b].
Several faster verification methods rely on bit-parallelism [Wu and Manber 1992b;
1992a; Navarro and Raffinot 2000; Navarro 2001b]. In addition, bit-parallelism can
be used to efficiently compute the dynamic programming matrix [Myers 1999; Hyyrö
2005]. The key idea of bit-parallel methods is to simultaneously update several small
numbers packed into a single computer word using a few processor instructions. It can
be seen that the degree of parallelization increases with the size of the computer word.

The Shift-AND is an early bit-parallel algorithm proposed by Dömölki [1968] for
the purpose of exact string matching. Later, a variant of this algorithm, known as the
Shift-OR, was rediscovered by Baeza-Yates and Gonnet [1992]. They also extended
the Shift-AND to the case of the Hamming distance, multiple-pattern searching, and
searching for simple regular expressions.
Wu and Manber [1992a] proposed a generalization of the Shift-AND for searching

with the edit distance. Their method is based on simulation of a non-deterministic
Levenshtein automaton. Given the pattern p and the maximum allowed distance k,
the Levenshtein automaton is a finite state machine that accepts only strings s such
that ED(p, s) ≤ k. In the Shift-AND algorithm, the states of the non-deterministic
automaton are represented by the bits of computer words: unit bit values correspond
to active states and zero bit values correspond to inactive states.

Another approach to efficient approximate verification involves a deterministic Lev-
enshtein automaton. Kurtz [1996] and Navarro [1997b] suggested to evaluate the au-
tomaton in a lazy way. Mihov and Schulz [2004] proposed to use a universal deter-
ministic Levenshtein automaton, which is fully constructed before searching. This is a
modification of Wu et al.’s [1996] automaton for the purpose of complete string match-
ing. The automaton is universal in the sense that it does not depend on p and s.
For a detailed discussion of sequential search algorithms we refer the reader to the

surveys by Jokinen et al. [1996], Navarro [2001a], and Hyyrö [2003a; 2003b].
In our experiments, we use a combination of algorithms implemented in agrep [Wu

and Manber 1992b; 1992a], which we denote by magrep1 and magrep2. They are
known to be fast for short patterns and small number of errors. In Section 8.2.3 we
verify the efficiency of these algorithms on our data.
Both magrep1 and magrep2 use a two-step on-line filtering procedure, where the

filtering consists in splitting the pattern and searching for pattern parts exactly. The
methods use two algorithms for exact multi-pattern searching: magrep1 uses a variant
of the Shift-OR algorithm as described by Wu and Manber [1992b]; magrep2 uses a
Boyer-Moore like algorithm proposed by Wu and Manber in another paper [1992a].

The checking step of both magrep1 and magrep2 employs a transposition-aware
variant of the Shift-AND algorithm [Hyyrö 2003a], which also simulates the non-
deterministic Levenshtein automaton. The underlying automaton is modified for the
task of complete string matching: it does not not contain a self-loop in the start state
and keeps only states that correspond to 2k + 1 main diagonals of the dynamic pro-
gramming matrix.

6. DIRECT INDEXING METHODS

6.1. Prefix Trees

6.1.1. String Trie. An important property of a prefix tree is that every approximate
occurrence of the search pattern p can be found by a recursive traversal of the tree
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Algorithm 1 Searching in the Trie

(1) If ξcurr is a leaf, the algorithm backtracks after checking whether Tcurr is an accept
state and outputting the string scurr whenever this check succeeds;

(2) If ξcurr is an internal node, the Step 3 is repeated for every child node ξchild of the
node ξcurr;

(3) Let v be the label of the edge that leads from ξcurr to ξchild. The Levenshtein au-
tomaton consumes the characters of the label v and moves to the state T ′. If T ′ is
the fail state, the algorithm backtracks. Otherwise, it proceeds recursively to Step
1 with ξcurr = ξchild, scurr = scurrv, and Tcurr = T ′.

starting from the root. An early implementation of this idea was described by James
and Partridge [1973], who proposed an algorithm that is capable of recovering from
a mismatch by recursively considering substitutions, insertions, and deletions along
the search path. This algorithm does not rely on the edit distance and uses domain-
specific heuristics to produce the most likely match (in particular, the probability of
encountering a string). Klovstad and Mondshein [1975] described a trie-based search
algorithm that obtains a similarity score for any match found. Though few details are
given, the score is apparently computed as the extended edit distance (see Section 2.2)
between dictionary and pattern strings, normalized by lengths of pattern strings.

To the best of our knowledge, the trie-based search algorithm presented in this sec-
tion originated from computational biology and was rediscovered many times. Some of
the early descriptions were given by Baeza-Yates and Gonnet [1990]15 and by Ukko-
nen [1993]. This method is best described as a recursive parallel traversal of the trie
and the deterministic Levenshtein automaton. Let s be a string that is a not a pre-
fix of an approximate match of p with at most k errors. If the Levenshtein automaton
“consumes” s, it reaches the special fail state.

The trie-based search algorithm is as a recursive procedure that keeps a node ξcurr,
a string scurr, and a state Tcurr of the Levenshtein automaton. The recursion starts
with ξcurr pointing to the root node, scurr = ǫ, and Tcurr = T0 (T0 is the start automaton
state). It unfolds as shown in Algorithm 1.

This algorithm does not necessarily require the deterministic Levenshtein automa-
ton and can use any verification method. In particular, our implementation of the
string trie is based on the bit-parallel algorithm Shift-AND [Wu and Manber 1992a]
(see Section 5).

Another approach to verifying whether the string s starts an approximate match for
the pattern p consists in incremental column-wise computation of the dynamic pro-
gramming matrix (DP matrix) using Recursion (4), p. 11.

In the case of the Levenshtein distance, this algorithm checks whether the last col-
umn contains essential elements, i.e., elements with values less than or equal to k. It
is equivalent to the condition that a prefix of p matches s within k errors. If all col-
umn elements are larger than k, the string s cannot start an approximate occurrence
and the algorithm backtracks. Whenever the search procedure reaches a leaf, it checks
whether the bottom element of the last column of the DP matrix is less than or equal
to k.

In the case of the Damerau-Levenshtein distance and transposition-aware search-
ing, the search procedure computes the DP matrix using Recursion (5). Since values
of elements in the current column depend on values of elements in both the last and

15A conference version of this paper was published nine years later [Baeza-Yates and Gonnet 1999].
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Fig. 5: DP matrices computed during searching in the trie

b e s t
e 1 1 2 3
s 2 2 1 2
t 3 3 2 1

t r
e 1 2
s 2 2
t 2 3

(a) For strings “est” and “best” (b) For strings “est” and “tr”

the next to last column, the search procedure checks whether at least one of two last
columns contains an essential element.
Consider, for instance the trie on Panel (b) of Figure 3, p. 17. Assume that we search

for pattern “est” within one error (k = 1) using the transposition-unawaremethod. The
search procedure starts from the root and proceeds to the child on the left, which spells
string “best”. At this point, the search procedure calculates the DP matrix column by
column. The transposition-unaware search procedure keeps only the last column of
the DP matrix, but for clarity of exposition we present the complete DP matrix (see
Panel (a) of Figure 5). Also note that we omit the row that corresponds to i = 0 and the
column that corresponds to j = 0 in Recursion (5).
Each column of the matrix on Panel (a) of Figure 5 has one essential value. There-

fore, the search procedure cannot leave the branch until it reaches the terminal node.
The bottom element of the last row of the DP matrix is equal to 1. Because the value
of this element does not exceed the threshold of k = 1, the search procedure reports an
approximate match: “best”.

Next, the search procedure returns to the root and descends to the child node on
the right. This node spells string “tr”. Then it computes the part of the DP matrix
that corresponds to string “tr” (see Panel (b) of Figure 5). The first column contains an
essential element. Therefore, the search procedure has to compute the second column.
The second column does not contain essential elements, which results in the search
procedure abandoning the branch and completing execution.

6.1.2. FB-trie. In this section, we review another approach to improving the retrieval
time that combines pattern partitioning and tries. It requires a pair of tries: the trie
built over the dictionary strings and the trie built over the reversed dictionary strings.
The idea of using an index built over the reversed dictionary strings was proposed by
Knuth [1973] (see also [Knuth 1997], p. 394).
There exist a number of solutions based on this idea, which are tailored specifically

to the case k = 1. One common approach employs a pair of suffix trees (unmodified and
reversed) and a geometric data structure to intersect search results obtained from two
suffix trees [Ferragina et al. 1999; Amir et al. 2000].
A recent implementation of this approach [Belazzougui 2009] employs a pair of

succinct tries and one-deletion dictionaries (see Section 6.2.10, p. 33). The proposed
method uses space O(λN) and answers approximate queries in O(n + occ) time for
k = 1 in the worst case (occ is the number of occurrences).
In what follows we describe a modification of the reversed dictionary method pro-

posed by Mihov and Schulz [2004]. This modification is based on Corollary 6.2 of parti-
tioning Theorem A.3 (a transposition-aware version is based on Theorem A.6). For sim-
plicity of exposition, we discuss only a transposition-unaware version of the method.

OBSERVATION 6.1. The restricted Levenshtein distance between strings p and s is
equal to the restricted Levenshtein distance between reversed strings:

ED(p, s) = ED(rev(p), rev(s))
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Note that Observation 6.1 also holds for Damerau-Levenshtein distance. Observation
6.1 and Theorem A.3 from Appendix A imply:

COROLLARY 6.2. Let ED(p, s) ≤ k and p be split into two parts: p = p1p2. Then s
can be represented as a concatenation of strings s1 and s2 that satisfy exactly one of the
following inequalities:

ED(p1, s1) = 0 and ED(p2, s2) ≤ k
ED(p1, s1) = 1 and ED(p2, s2) ≤ k − 1

· · ·
ED(p1, s1) = ⌈k/2⌉ − 1 and ED(p2, s2) ≤ ⌊k/2⌋ + 1
ED(rev(p1), rev(s1)) = ⌈k/2⌉ and ED(rev(p2), rev(s2)) ≤ ⌊k/2⌋
ED(rev(p1), rev(s1)) = ⌈k/2⌉ + 1 and ED(rev(p2), rev(s2)) ≤ ⌊k/2⌋ − 1

· · ·
ED(rev(p1), rev(s1)) = k − 1 and ED(rev(p2), rev(s2)) ≤ 1
ED(rev(p1), rev(s1)) = k and ED(rev(p2), rev(s2)) = 0

The search procedure uses a pair of path-compressed string tries: one trie indexes
the dictionary W , while the other indexes reversed dictionary strings: {rev(s) | s ∈ W}.
We call this data structure FB-trie, which stands for “forward and backward trie”.
At search time, the pattern p is split into two parts p1 and p2 of roughly equal lengths

(e.g., ⌊n/2⌋ and ⌈n/2⌉). Then the method executes a series of k+1 two-step sub-queries.
There are two types of such sub-queries:

(1) A sub-query of the first type uses the regular trie to find nodes ξ that spell strings
s1 such that ED(p1, s1) = t (0 ≤ t ≤ ⌈k/2⌉ − 1). For every node ξ found at the first
step, the search procedure recursively traverses descendants of ξ to find leaves that
spell strings s1s2 that satisfy ED(p2, s2) ≤ k − t.

(2) A sub-query of the second type uses the reversed dictionary trie to find nodes ξ
that spell strings s′2 such that ED(rev(p2), s

′
2) ≤ t′ (0 ≤ t′ ≤ ⌊k/2⌋). For every node

ξ found at the first step, the search procedure recursively traverses descendants
of ξ to find leaves that spell strings s′2s

′
1 that satisfy ED(rev(p1), s

′
1) = k − t′. The

original dictionary string is equal to rev(s′2s
′
1).

Note that there are ⌈k/2⌉ queries of the first type and ⌊k/2⌋+1 queries of the second
type. Furthermore, threshold values t and t′ are upper bounded by

max(⌈k/2⌉ − 1, ⌊k/2⌋) ≤ ⌊k/2⌋ ≤ k/2.

To verify whether the distance between respective prefixes and suffixes does not
exceed t or t′, we can use column-wise computation of the dynamic programming ma-
trix (see Section 6.1.1, p. 21), a bit-parallel verification algorithm, or a deterministic
Levenshtein automaton (see Section 5).

6.1.3. k-errata tree. To address the worst-case performance issues that are associated
with naive implementations of wildcard and approximate string searching using the
trie, Cole et al. [2004] introduced the k-errata tree. In what follows, we outline a sim-
plified variant of this method that supports only membership queries.
The approach of Cole et al. [2004] blends partial neighborhood generation with the

string trie and treats errors by recursively creating insertion, substitution, and dele-
tion subtrees. For transposition-aware searching, transposition trees should also be
created. The method uses a centroid path decomposition to select subtrees that par-
ticipate in the process: the goal of the decomposition is to exclude subtrees with large
numbers of leaves and, thus, to significantly reduce the index size. Coelho and Oliveira
[2006] proposed a similar data structure: a dotted suffix tree, which uses only substitu-
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Fig. 6: Example of a centroid path and of a substitution tree. The original trie stores
keys: “tree”, “trie”, “trump”, and “trust”.

tion subtrees. Unlike the k-errata tree, a substitution tree created for a node ξ includes
all subtrees of ξ.
A centroid path starts from a root of a tree. In each node ξ, the centroid path branches

to a subtree with the largest number of leaves (ties are broken arbitrarily). A subtree of
ξ that does not belong to the centroid path is an off-path subtree. Each off-path subtree
is a starting point of another centroid path. It can be further recursively analyzed to
identify centroid paths that start from its descendants. The main centroid path is the
one that starts from the root of the entire tree.
Figure 6, Panel (a), illustrates the concept of centroid path decomposition. Consider,

for example, the black node, which is a direct descendant of the root. Its rightmost
subtree has two leaves, while all other subtrees have only one leaf each. Therefore, the
main centroid path branches to the rightmost node. This node has two children, which
are both leaves. In this case we have a tie and decide to continue the main centroid
path to the right.
To make the search faster, error trees are created: insertion, deletion, substitution,

and possibly transposition trees. In addition, error trees that belong to the same cen-
troid path may be merged to form a hierarchy of trees. This allows one to search for
the pattern in more than one tree at the same time. We do not discuss all the details of
this procedure and address the reader to the paper by Cole et al. [2004] for a complete
description.
Instead, we consider an example of a simplified approximate search procedure that

allows only substitutions. This procedure relies only on substitution trees (to treat in-
sertions, deletions, and transpositions one needs insertion, deletion, and transposition
trees, which are created in a similar way). During indexing, a substitution subtree is
created for every internal node ξ as follows:

(1) Every off-path subtree of ξ is cloned;
(2) The first character of the subtree root label is replaced by the wildcard character

“?” that matches any character;
(3) The modified subtrees are merged: see Panel (b) of Figure 6 for an example;
(4) In a general case of k > 1, each error subtree is recursively processed to handle

remaining k − 1 errors.

Note that the subtree that contains a centroid path does not participate in this process.
The search algorithm starts from the root of the k-errata tree and follows the longest

path that matches a prefix of the pattern p exactly. Whenever the search exits a cen-
troid path, it has to recursively search all the off-path substitution (insertion, deletion,
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and transposition) subtrees that hang from this centroid path before the exit point.
The search for the longest common prefix stops either:

—On an edge, between two nodes; or
—At an internal node ξ.

In the first case, the algorithm considers a possible deletion, insertion, substitution,
and transposition. It recursively restarts from either the point of mismatch, or form the
point that is one character below. These searches are carried out with the maximum
allowed distance equal to k − 1.
In the second case, there are two sub-searches that should be executed. First, the al-

gorithm considers one edit operation along the centroid path exactly as in the previous
case. Second, the search restarts from the root of a substitution (insertion, deletion,
and transposition) subtree of the node ξ. Again, the maximum allowed edit distance is
equal to k − 1.

To make the search for the longest common prefix efficient, Cole et al. [2004] use an
index that perfoms this operation in O(log log λN) time, where λN =

∑

s∈W |s| is the
number of dictionary characters.

Consider a sample pattern “trze” and a search procedure that allows at most one
substitution (and no other errors). The search procedure matches the prefix “tr” and
reaches the black node (See Panel (a) of Figure 6). The next pattern character “z”
does not match any child label. Therefore, we skip one character on the centroid path
(denoted by a thick line) and continue searching in the rightmost subtree for an exact
match. This search produces no results. Then, instead of considering each of the off-
path subtrees separately, the search procedure looks for the pattern suffix “ze” in the
substitution tree (see Panel (b) of Figure 6). The substitution tree contains the only
string “?e”, which matches the suffix exactly.

It can be seen that the described simplified variant of the k-errata tree fully supports
only membership queries, but not regular searches: a single terminal node of an error
subtree typically corresponds to several dictionary strings. Furthermore, this variant
is not an associative method. A straightforward way to obtain an associative method is
to attach a string identifier to each leaf node (which is essentially done in the original
method by Cole et al. [2004] employing suffix trees). Then, if the merge procedure
combines two leaf nodes ξ1 and ξ2 into the node ξ, it also combines identifiers associated
with ξ1 and ξ2 into a single list and attaches this list to ξ.

The search time of the k-errata tree is

O

(

n +
(6 log2 N)k log log λN

k!
+ 3k · occ

)

,

where occ is the number of approximate matches in the dictionary. For k > 1 and large
N , the method may be impractical, because the size of the index is upper bounded by

O

(

λN + N
(5 log2 N)k

k!

)

It is possible to reduce the size of the index by the factor of log2 N using a suffix-array
like structure instead of the trie [Chan et al. 2006].

6.2. Neighborhood Generation

The essence of neighborhood generation consists in “reversal” of errors: for instance, if
the string “eta” is obtained from the string “beta” by removal of the first character, it
is possible to reverse the error by inserting character “b” in the beginning of the string
“eta”. In general, it is necessary to compute a list of strings obtainable from the search
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pattern p using at most k edit operations. This list, known as a full k-neighborhood,
consists of the strings s such that ED(p, s) ≤ k.
In the classic variant of neighborhood generation method, the search procedure com-

putes the full k-neighborhood of p at query time. Then it checks neighborhood members
for an exact dictionary match. One of the first implementations of this method is the
Unix utility Ispell [Kuenning et al. 1988].16

In what follows, we discuss methods that employ a compact neighborhood repre-
sentation: a condensed, super-condensed, and reduced-alphabet neighborhood. After-
wards, we discuss several intermediate methods that memorize deletion-only neigh-
borhoods during indexing time. This discussion is preceded by a description of two
neighborhood generation algorithms.

6.2.1. A Straightforward Algorithm to Generate Full Neighborhood. A full neighborhood can be
constructed by applying various edit scripts containing up to k edit operations. Because
these operations are not overlapping (see Section 2.2 for a definition of the restricted
edit distance), we need to consider only edit scripts where basic edit operations are
ordered by a string position, where these operations are applied. Furthermore, these
positions should be strictly increasing.
The straightforward neighborhood generation algorithm can be readily implemented

as a recursive procedure with the following input parameters: the current string s, the
starting position istart, and the maximum number of edit operations k that can be
applied to s in positions i ≥ istart.
For example, a process that constructs a one-neighborhood of string abc (without

transpositions) may have the following steps:

(1) Output original string abc;
(2) Output 3 strings bc, ab, and ac obtainable by a single deletion;
(3) Output 4 × 26 strings aabc, babc, . . . , zabc, aabc, abac, . . . , azbc, abac, abbc, . . . ,

abzc, abca, abcb, . . . , abcz obtainable by insertion of various alphabet characters
at positions one, two, and three as well as at the end of the string.

(4) Output 3 × 25 strings bbc, cbc, . . . , zbc, aac, acc, . . . , azc, aba, abb, . . . , abz obtain-
able by substitution of various alphabet characters for characters at positions one,
two, and three.

It can be seen that the algorithm generates 183 strings of which 180 strings are unique
and 3 strings (aabc, abbc, abcc) are repeated twice.

According to Ukkonen [1993], the total number of edit scripts containing at most k
operations and, consequently, the size of the k-neighborhood of p, can be upper bounded
by

Uk(p) =
12

5
(n + 1)k(|Σ| + 1)k = O(nk|Σ|k), (12)

where n = |p| and |Σ| ≥ 2 . From the proof of Ukkonen it follows that Equation (12) is
also an upper bound for neighborhood generation time and that the same asymptotic
upper bound holds for neighborhoods with transpositions.
A disadvantage of the straightforward neighborhood generation method is that it

may generate many repeating strings: in the case of DNA data and k = 3, the algo-
rithm generates roughly thrice as many strings as the size of the full neighborhood.
One approach to solve this problem would be to memorize already generated strings.
However, a lookup in the dictionary takes roughly the same time as a lookup in a

16Ispell has originated from the Unix utility spell [Gorin 1971], which combines neighborhood generation
with partitioning of a dictionary using the first two string letters and string length.
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set of already generated strings. Therefore, memorization, which requires extra CPU
resources to update the set, only increases retrieval time.

6.2.2. Neighborhood Generation via Searching in Hypothetical Trie. A full neighborhood of the
pattern p can be obtained by computing the edit distance from p to every string that
is at most |p| + k characters long and checking whether the distance is less than or
equal to k [Myers 1994]. Because many strings share the same prefix, a more efficient
approach is to perform an approximate search in the hypothetical trie that contains
all strings no longer than |p| + k characters.

This algorithm can be seen as a recursive parallel traversal of the hypothetical
trie and the deterministic Levenshtein automaton, which is presented in Algorithm 1,
p. 21. Because the hypothetical trie has a very regular structure, it does not have to
be materialized. To simulate the traversal of this trie, Step 3 of Algorithm 1 should be
executed |Σ| times, setting v to Σi in the i-th iteration. In addition, we should modify
Step 1 so that it is executed for every visited node without subsequent backtracking.

Even though this procedure generates only unique strings, in our experiments it
is slower than the straightforward neighborhood generation and is feasible only for
small alphabets. A modification of this algorithm can be used to efficiently construct a
condensed and a super-condensed neighborhood.

6.2.3. Condensed Neighborhoods. It is also possible to improve retrieval efficiency of
neighborhood generation by eliminating unessential elements. Two types of such ele-
ments have been considered in the literature:

(1) Strings that are proper prefixes of other neighborhood strings;
(2) Strings that are proper substrings of other neighborhood strings;

A neighborhood is called condensed [Myers 1994] if it does not contain unessen-
tial elements of the first type, i.e., proper prefixes of other strings. A super-condensed
neighborhood [Russo and Oliveira 2005] does not contain unessential elements of the
second type, i.e., proper substrings of other strings. Note that every super-condensed
neighborhood is also a condensed neighborhood.

The algorithm to compute a condensed neighborhood is almost identical to the algo-
rithm in Section 6.2.2: it is a recursive parallel traversal of the hypothetical trie over
Σ∗ and the Levenshtein automaton. To exclude strings whose proper prefixes belong to
the neighborhood, the algorithm backtracks after the Levenshtein automaton reaches
the first accept state.

Russo and Oliveira [2005] proposed a modification of this method that allows one to
construct a super-condensed neighborhood. It can be implemented using a pair of the
following non-deterministic automata:

—The first automaton recognizes all string prefixes that match the pattern within k
errors;

—The second automaton recognizes all substrings that match p within k errors and
are not prefixes of p.

These automata can be efficiently simulated using the bit-parallel algorithm
Shift-AND [Wu and Manber 1992a].

Condensed and super-condensed neighborhoods have been successfully incorporated
in approximate substring search methods that rely on filtering. A filtering algorithm
typically builds an exact substring index of a text string w, e.g., a suffix tree. At search
time, the pattern p is divided into several pieces: p = p1p2 . . . pt. By generating neigh-
borhoods of pattern pieces pi and finding all exact occurrences of neighborhood ele-
ments in the string w, we identify all positions where p may approximately match a
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Table II: Average size of a condensed neighborhood as a fraction of a full neighborhood
size.

k = 1 k = 2 k = 3
Condensed 0.83 0.66 0.49
Super-Condensed 0.68 0.41 0.19

Note: DNA Data, one thousand random 11-character
sequences.

substring of w. Then potential matches are verified by direct comparison with the pat-
tern. This approach – known as pattern partitioning – is discussed in Section 7.1 (see
also Theorem A.2, Appendix A).
It can be seen that a set of potential matches associated with unessential neighbor-

hood elements is a subset of potential matches associated with essential neighborhood
elements. Therefore, unessential elements could be excluded from consideration.
Exclusion of unessential elements does not lead to a principal modification of the

search procedure. However, should we employ a condensed neighborhood for complete
string matching and approximate dictionary searching, we would have to replace an
exact matching algorithm with a two-step filtering procedure that uses either prefix or
substring dictionary searching.
Such filtering method would be slower than a straightforward neighborhood genera-

tion unless the size of the super-condensed neighborhood were much smaller than the
size of the respective full neighborhood. According to our experimental results, this
condition holds only if the pattern is short and the alphabet is small. The difference
between the sizes of the super-condensed and the full neighborhood rapidly decreases
as the pattern length and/or alphabet size increase. For instance, in the case of DNA
sequences of 8 characters, the size of the super-condensed 3-neighborhood is typically
1/30th of the full neighborhood size. For DNA sequences of 11-20 characters that are
used in our experiments the difference is at most five-fold (See Table II).

6.2.4. Wildcard Neighborhood. The size of a full k-neighborhood grows exponentially
with the base n|Σ| and the exponent k, which makes the generation of full neighbor-
hood unfeasible for all but small k. The neighborhood can be compressed through ex-
cluding strings whose proper substrings belong to the neighborhood, but this method
works only for short patterns and small alphabets. In the case of natural languages,
better retrieval time can be achieved by using wildcard neighborhoods.

Let ? be a wildcard character that matches any alphabet character. Consider an
example of straightforward generation of the one-neighborhood for the pattern abc,
which generates 183 strings (see Section 6.2.1, p. 26). If we used the wildcard char-
acter for insertion and substitution in steps (3) and (4), we would obtain a compact
wildcard neighborhood that contains only the following 11 strings: abc, ?abc, a?bc,
ab?c, abc?, ?bc, a?c, ab?, bc, ab, and bc. Generation of the wildcard neighborhood re-
quires little effort. A method that employs the wildcard neighborhood would have short
retrieval time, if there were an index that supports wildcard searching efficiently. In
the following sections we review two approaches to wildcard indexing.

6.2.5. Reduced Alphabet Neighborhood Generation. Consider a hash function h(c) that
maps the original alphabet Σ to a reduced alphabet σ of a smaller size. A character h(c)
can be seen as a wildcard that matches every character a ∈ Σ such that h(a) = h(c).
The hash function h(c) induces a character-wise projection from Σ∗ to σ∗.

The indexing step consists in mapping dictionary strings si to strings h(si) and in-
dexing h(si) for an exact search. Original dictionary strings are stored in buckets based
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on their projections: if h(u) = h(v), then strings u and v are placed into the same bucket
associated with the projection h(u).
During searching, the pattern p is converted into its projection p′ = h(p). Then a full

neighborhood of p′ is generated using σ. Each element of the neighborhood is searched
for exactly. The result of this search is a set of projections and associated dictionary
strings.

This step provides a list of candidate strings that should be directly compared with
the search pattern p. A straightforward implementation of the checking step involves
verifying that the Levenshtein distance between p and a candidate string does not
exceed the maximum allowed distance k.
A more efficient checking approach is to create a wildcard neighborhood of the origi-

nal pattern using only deletions, transpositions, as well as substitutions and insertions
of the character ? that matches any alphabet character. Because the size of the wild-
card neighborhood is small, its generation requires little extra time. The elements of
the wildcard neighborhood can be efficiently compared with dictionary strings in time
proportional to the pattern length. An equivalent verification procedure consists in
computation of the Hamming distance. This approach is likely to be a well-known one,
but we could not find exact references.

Construction of the wildcard neighborhood is a recursive process synchronized with
construction of the reduced-alphabet full neighborhood of p′ = h(p). At each step of the
recursion, the original pattern p is modified according to the following rules:

— If we delete p′[i], we also delete p[i];

— If we transpose p′[i] and p′[i+1], we also transpose p[i] and p[i+1];

— If we substitute p′[i] with some character c, we replace p[i] with ?;

— If we insert a character in position i of p′, we insert ? in position i of p.

Note that the last two modifications, which introduce the wildcard, apply only to the
first insertion and/or substitution in position i.

6.2.6. k-deletion Indices. One neighborhood generation method computes a full
k-neighborhood of every dictionary string at indexing time. It then indexes neighbor-
hood members for exact matching, which makes retrieval quite fast. However, this
method is highly impractical due to enormous space requirements. A better approach
relies on index-time memorization of partial neighborhoods. This approach is based
on two simple observations, whose justifications follow from the definitions of the re-
stricted edit distance and the optimal alignment (see Section 2.2 and Appendix D.2):

OBSERVATION 6.3. If ED(p, s) ≤ k, then a wildcard k-neighborhood of p intersects
with a wildcard k-neighborhood of s.

OBSERVATION 6.4. Let ED(p, s) ≤ k and v be a string from the intersection of wild-
card k-neighborhoods of p and s. Let v′ be a string obtained from v by deleting all
wildcards. Then v′ can be obtained from both p and s using at most k deletions.

These observations immediately give the idea of indexing all strings obtained from
dictionary strings by applying l ≤ k deletions. This approach was proposed by Mor
and Fraenkel [1982], though it is better known from the paper by Muth and Man-
ber [1996]. Du and Chang [1994] proposed a similar method, but instead of indexing
complete strings obtained by l ≤ k deletions, they index only specific two-character
combinations. As a result, far fewer strings need to be indexed (especially for larger
k) at the expense of higher verification cost. In what follows, we explain Mor-Fraenkel
method for k = 1. After that, we discuss the generic case (k ≥ 1).
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6.2.7. Mor-Fraenkel Method for k = 1. According to Observation 6.4, all single-character
mismatches can be detected by indexing deletion-only one-neighborhoods as well as
links to respective dictionary strings. In a naive implementation of this idea, the search
procedure would generate a deletion-only one-neighborhood of the pattern p and search
neighborhood elements for an exact match. For each string found, the search procedure
would follow a link to retrieve an original dictionary string.
The naive algorithm is prone to false positives. Let ∆i(s), i > 0 be an edit operation

that removes character s[i] from s and ∆0(s) = s be an identity operation. Consider,
for instance, the search pattern p = boxers and a dictionary containing the string
s = aboxer. For k = 1, the search procedure retrieves s, because ∆1(s) = ∆6(p) = boxer.
On the other hand, ED(p, s) = 2.
To eliminate false positives, we need to memorize deleted characters and their

respective positions. The corresponding indexing algorithm iterates over dictionary
strings {s ∈ W}, and generates triples {(∆j(s), j, s[j])} for 0 ≤ j ≤ |s|. If j = 0, then
∆j(s) = s and s[j] = ǫ. Then the algorithm indexes triples using ∆j(s) as a key (e.g.,
with the help of hashing or tries). For associative searching, triples can be expanded
by adding a pointer to associated data.
Given the pattern p, the search procedure generates triples (∆i(p), i, p[i]), where 0 ≤

i ≤ |p|. For each triple (∆i(p), i, p[i]), the method retrieves the following dictionary
triples:

{(s′, j, a) | s′ = ∆i(p)}. (13)

Each retrieved triple defines a possibly empty edit script that transforms a dictionary
string into p:

(1) If i = j and p[i] = a, the edit script is empty;
(2) If i = 0 and j 6= 0, the edit script contains only the deletion of a;
(3) If j = 0 and i 6= 0, the edit script contains only the insertion of character p[i];
(4) If i = j > 0 and a 6= p[i], the edit script contains only the substitution of a with p[i];
(5) If i = j − 1, i > 0 and a = p[i], the edit script contains only the transposition of

characters in positions i and i + 1;
(6) If both i and j are positive and i 6= j, the edit script contains two edit operations:

a → ǫ and ǫ → p[i].

It can be seen that every triple (s′, j, a) that satisfies Equation (13) and one of con-
ditions 1-5 represents the dictionary string s such that ED(p, s) ≤ 1. This string is
reconstructed from the triple by inserting the character a at position j of the string
s′. On the contrary, for every dictionary string s that is transformed into p by at most
one edit operation, there exist i and j such that s′ = ∆j(s) and ∆i(p) satisfy one of the
conditions 1-5.

6.2.8. Mor-Fraenkel Method: General Case, Transposition-Unaware Searching. The Mor-
Fraenkel method has a straightforward generalization based on generating l ≤ k
deletion-only neighborhoods. First we describe this generalization for transposition-
unaware searching and then explain how transpositions can be taken into account.

The indexing algorithm of the generalized Mor-Fraenkel method iterates over dictio-
nary strings {s ∈ W} and generates all possible triples in the form (s′,Ds, Cs), where
s′ = ∆τl−l+1(. . . ∆τ2−1(∆τ1

(s)) . . .) is a string obtained from s by deletion of characters
s[τ1], s[τ2], . . . , s[τl] (l ≤ k). Positions of deleted characters satisfy 0 < τ1 < τ2 < . . . < τl.

17

Ds = (τ1, τ2 − 1, . . . , τl − l + 1) is an l-tuple that defines positions of deleted charac-

17For simplicity of exposition, we use different notation to explain case k = 1 and the generic case. In the
case k = 1, the unmodified dictionary strings are stored in the form of triple (s, 0, ǫ). In the generic case, all
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ters. Cs = (s[τ1], s[τ2], . . . , s[τl]) is an l-tuple (i.e., a list) that stores deleted characters
themselves. All triples are indexed using the first element, i.e., s′, as a key.

OBSERVATION 6.5. Given triple (s′,Ds, Cs) described above, the string s can be re-
covered by inserting characters Cs

i at positions Ds
i +i−1 of the string s′ in the increasing

order of i.

OBSERVATION 6.6. Ds, which encodes positions of deleted characters, is an ordered
sequence of possibly repeating integers. Therefore, it is a multiset, i.e., a set that may
contain repeated elements.

The size of the finite multiset A (denoted by |A|) is a total number of element occur-
rences: repeated elements are counted as separate entities. In this survey, we denote
finite multisets with integer elements using l-tuples, where elements are sorted in
ascending order.

Similarly to regular sets, multisets can be represented by a non-negative integer
function called an indicator. The indicator of the multiset A is denoted by 1A. For e ∈ A,
1A(e) is equal to the number of occurrences of e in A. An intersection of multisets can
be expressed in terms of the following operation over multiset indicators:

1A∩B(e) = min(1A(e),1B(e)).

At query time, the search procedure computes a deletion-only k-neighborhood of the
pattern p by deleting m ≤ k characters in positions ρi (0 < ρ1 < ρ2 < . . . < ρm).
Then it generates triples (p′,Dp, Cp), where p′ = ∆ρm−m+1(. . . ∆ρ2−1(∆ρ1

(p)) . . .), Dp =
(ρ1, ρ2−1, . . . , ρm−m+1) is a multiset that defines positions of deleted characters, and
Cp = (p[ρ1], s[ρ2], . . . , s[ρm]) is the list that represents deleted characters. Finally, the
search procedure retrieves all dictionary triples (s′,Ds, Cs) that satisfy the following:

p′ = s′

|Ds| + |Dp| − |Ds ∩ Dp| ≤ k (14)

Each triple that satisfies equation (14) represents a dictionary string that matches
p within k errors. These dictionary strings can be reconstructed from the retrieved
triples.

It can be seen that multisets Ds and Dp define an edit script that transforms p into
s using |Dp| − |Ds ∩ Dp| deletions, |Ds| − |Ds ∩ Dp| insertions, and at most |Ds ∩ Dp|
substitutions.

Consider an example of strings s =aboxer and p =boxez. The edit distance between
them is two. To make the strings equal, it is necessary to delete the first and the sixth
characters from s as well as the fifth character from p. The multisets that represent
positions of deleted characters are Ds = (1, 5) and Dp = (5). Note that the second
position in Ds is adjusted by the preceding deletion. The intersection contains only one
element. Therefore, |Ds| + |Dp| − |Ds ∩ Dp| = 2 + 1 − 1 = 2 = ED(s, p).

As shown in Appendix D.2, if ED(p, s) = k, then p and s satisfy Inequality (14) for
some Dp and Ds. Therefore, the method allows one to find all strings s ∈ W such that
ED(p, s) ≤ k.

6.2.9. Mor-Fraenkel Method: General Case, Searching with Transpositions. The indexing algo-
rithm of this transposition-aware variant is described in Section 6.2.8. The retrieval

positions of deleted characters are positive by design, and unmodified dictionary strings are represented by
triples (s, ∅, ∅).
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algorithm is essentially the same as that in Section 6.2.8. It also relies on construct-
ing multisets Dp and comparing them with multisets Ds precomputed during index-
ing. Transpositions are taken into account by correcting Dp for transpositions. For
each correction, we insert the modified multiset into Inequality (14) to verify whether
ED(p, s) ≤ k.
Assume that an optimal edit script contains at least one transposition. Then, there

exist multisets Dp and Ds, which represent deleted positions, as well as lists Cp and
Cs, which represent deleted characters, that satisfy the following conditions:

∃i, j Ds
j = Dp

i + 1 and Cp
i = Cs

j

Dp
i < Dp

i+1 or i = |Dp|
Ds

j > Ds
j−1 or j = 1

(15)

Unfortunately, if the multisets Ds and Dp satisfy the Equation (15), they do not
always represent an optimal edit script that contains a transposition. Consider, for
instance, strings s =“gab” and p =”bag”. To make the strings equal, one can delete
the first and the second characters. The resulting multisets and deletion lists are:
Ds = Dp = (1, 2), Cs = (g, b), and Cp = (b, g). They satisfy Equation (15) with i = 1
and j = 2. However, the only optimal alignment consists of two substitutions and does
not have a transposition.
To resolve the ambiguity, one should consider all pairs of indices {(il, jl)} that sat-

isfy Equation (15). For each pair (il, jl), the correction for transposition consists in
increasing Dp

il
by one. If the modified Dp satisfies Inequality (14), then the Damerau-

Levenshtein distance between p and s does not exceed k. Because the Mor-Fraenkel
method can be used only with small k, the number of corrections is very low in prac-
tice. In the worst case this number does not exceed 2k−1 (note that jl is unambiguously
defined by il). The average number of corrections would be much smaller.

6.2.10. Transducer-Based Variant of Mor-Fraenkel Method for k = 1. If we use conventional
data structures to store deletion-only l-neighborhoods, such as hashing tables or tries,
the index size can be very large. For instance, an index that satisfies queries for k ≤ 2
is approximately 140 times the size of dictionary (see Table IX, p. 65). To offset ex-
ceptional index overhead Mihov and Schulz [2004] proposed to represent l-deletion
dictionaries (l ≤ k) in the form of minimal transducers. For some dictionaries and lan-
guages, this method can reduce index size by an order of magnitude. In what follows,
we present this idea for k = 1. The method can be generalized for k > 1, but we omit
the description.
A transducer T (s) used in the method of Mihov and Schulz is a deterministic finite

state automaton with an output. If T accepts s and, therefore reaches a final state, it
outputs a non-empty set of strings T (s). Otherwise, T (s) = ∅.

Transducers T1 and T2 are equivalent if, for every input s, T1(s) = T2(s). Among
equivalent transducers, Mihov and Schulz choose a transducer with the minimum
number of states, i.e., a minimal transducer. Minimal transducers can be used for
memory-efficient representation of l-deletion neighborhoods and can be constructed
incrementally [Skut 2004].
The method proposed by Mihov and Schulz [2004], uses the following minimal trans-

ducers:

— T is a transducer that accepts only dictionary strings {s ∈ W}. If T accepts a string
s, it also outputs s.

— Ti (i > 0) accepts all strings u such that u = ∆i(s), s ∈ W . In words, it accepts strings
obtainable from a dictionary string by deletion of the i-th character. If Ti accepts a
string u, it outputs {s ∈ W |u = ∆i(s)}.
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— Tall = ∪Ti. It accepts strings u obtainable by a single deletion from a dictionary
string (in any position). If Tall accepts u, it outputs all strings s ∈ W such that
u = ∆j(s) for some j.

Given search pattern p, the search procedure computes and merges the following
sets of strings:

—The pattern (if it is present in W ): T (p);
— Strings obtainable by a single insertion into p: Tall(p);
— Strings obtainable by a single deletion from p: T (∆1(p)), T (∆2(p)), . . . , T (∆n(p));
— Strings obtainable by a single substitution: T1(∆1(p)), T2(∆2(p)), . . . , Tn(∆n(p)).

Note that the search procedure may produce duplicates, which have to be eliminated.
It can be also seen that the method described above cannot be used for associa-

tive searching directly. To support associative searches, we need an additional index
that maps dictionary strings to associated data. Then for every string s found in a
transducer-based index, the associated data can be retrieved by searching s in the
additional index for an exact match.

The average size of the set {s ∈ W |ED(p, s) ≤ k} is usually small. Furthermore,
an exact lookup in the additional index is fast (only a fraction of a microsecond in our
PC). Therefore, in many practical situations this additional index supports associative
searching with little time and index overhead.

A similar method was proposed by Belazzougui [2009] for k = 1. This method uses
space O(λN), whereas the hash-based implementation of Mor-Fraenkel method can
use up to λ2

mN bytes (λm is the maximum length of a dictionary string).
Belazzougui proposed a transducer of a special kind: a lists dictionary. Whenever a

regular transducer accepts a string s and produces output T (s), an equivalent lists dic-
tionary outputs the same set T (s). However, if the regular transducer does not accept
s and produces the empty set, the lists dictionary produces an output T (s′), where s′

is some string acceptable by the regular transducer T . Thus, the Belazzougui trans-
ducer can produce false positives, which have to be resolved through direct searching
in the dictionary. The dictionary is implemented through minimal perfect hashing (see
Section 4.1, p. 16).

In addition to transducers, the method uses a pair of succinct tries to answer queries
in O(n) time in the worst case. Belazzougui argues, however, that this data structure
is unlikely to be efficient on modern architectures unless it deals with long strings.
The rationale is that retrieval times are often dominated by the number of accesses to
non-consecutive memory regions (which is large if tries are used).

Therefore, a simplified version of the method that employs the transducers alone
may be more efficient in practice. To this end, a transducer Ti(s) can be implemented
as a minimal perfect hash index that stores characters s[i] indexed by the string ∆i(s).
This hash index does not store the strings ∆i(s) themselves and uses space O(λN).

Consider a search request that checks for a substitution at position i. Ti(∆i(p)) rep-
resents a set of characters {cj}. If there are dictionary strings obtainable from p by
a substitution of the i-th character, all such strings are obtained from p by replacing
p[i] with one of {cj}. Otherwise, the characters found represent false positives. These
false positives can be discarded by a single search operation that verifies whether the
string p[1:i−1]c1p[i+1:n] belongs to the dictionary (instead of c1 one can use any single
cj ∈ Ti(∆i(p))).

Instead of a minimal perfect hash function, it is possible to use a regular hash func-
tion. The resulting data structure is larger, but it still uses space O(λN). It is also less
time-efficient, because a non-perfect hash function can place characters cj belonging
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to different strings into a single bucket. Therefore, the search procedure has to verify
whether p[1:i−1]cjp[i+1:n] belongs to the dictionary, for every cj ∈ Ti(∆i(p)).

6.2.11. Hybrid Neighborhood Generation. Another approach to reducing index size con-
sists in combining Mor-Fraenkel method with full neighborhood generation. At in-
dexing time, we use Mor-Fraenkel method to index deletion-only t-neighborhoods for
t ≤ l < k. At query time, the search procedure generates full (k − l)-neighborhood of
the pattern p and searches for its elements in the constructed index with at most l
errors.
In our experiments, we have implemented this method for l = 1 and l = 2: the

implementations are denoted by hybrid neighborhood generation-l. In general, it is
possible to combine full query-time neighborhood generation with any approximate
search method.

6.3. Metric Space Methods

6.3.1. Metric Space Properties. Extensive surveys of metric space methods can be found
in the paper by Chávez et al. [2001a] and in books by Samet [2005] and Zezula et al.
[2005]. These methods require a similarity function d(x, y) that satisfies the three ax-
ioms of a metric space:

(1) d(x, y) = 0 ⇔ x = y
(2) d(x, y) = d(y, x)
(3) d(x, y) ≤ d(x, z) + d(z, y)

The third axiom, known as the triangle inequality, is the key property. From the trian-
gle inequality and symmetry (the second axiom) it follows that:

d(x, z) + d(y, z) ≥ d(x, y) ≥ |d(x, z) − d(y, z)| ≥ 0 (16)

Inequality (16) is the fundamental property of the metric space that allows pruning
of the space at query time. To make pruning possible, a metric space method performs
a recursive decomposition of the space at indexing time. The obtained hierarchical par-
titioning of the space is best represented as a tree. A common approach to partitioning
involves bucketing: once the number of partition elements falls below bucket size b,
decomposition stops.
In this review, we focus on dictionary search methods that find all strings within a

certain restricted edit distance. As we explain in Section 2.2 (see Observations 2.10 and
2.11, p. 9), a straightforward transposition-aware generalization of the dynamic pro-
gramming algorithm given by Recursion (5) does not produce a subadditive function.
This is because the algorithm given by Recursion (5), p. 11, and its weighted general-
ization given by Recursion (3), p. 10, both compute the restricted edit distance, where
edit operations do not overlap and do not modify a substring more than once. The re-
stricted edit distance is not always equal to the unrestricted edit distance, but can be
computed more efficiently.
Thus, we use computation of the unrestricted Damerau-Levenshtein distance to

ensure that metric search methods find all strings within the specified restricted
Damerau-Levenshtein distance. To this end, we employ a two-step procedure. First,
the search procedure uses the unrestricted Damerau-Levenshtein distance to locate
buckets that might contain strings s such that ED(p, s) ≤ k. This is achieved through
computing distances to pivots: specially selected elements of the dataset that are used
to partition the dictionary. Whenever the search procedure enters a bucket, it uses
an efficient checking procedure (see Section 5, p. 19) to find strings s that satisfy
ED(p, s) ≤ k within the bucket. This checking procedure is based on the concept of
the restricted edit distance. Because the unrestricted Damerau-Levenshtein distance
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is a sub-additive lower bound for the restricted Damerau-Levenshtein distance, this
method would not miss any true matches.

6.3.2. Integer-Valued Distance Functions. The edit distance is an integer-valued func-
tion. Not all metric space methods are equally efficient in discrete metric spaces with
integer-valued distance functions. In particular, Baeza-Yates and Navarro [1998] ar-
gue that the drawback of continuous space methods, such as vantage point trees
[Uhlmann 1991], is that they cannot fully use the information obtained from com-
parison of two data points. This argument is partially supported by experimental eval-
uation [Fredriksson 2007]. Therefore, we exclude continuous space methods from con-
sideration.

These observations leave us with pivoting methods of two types:

—Recursive pivoting methods;
—Distance-matrix methods.

6.3.3. Recursive Pivoting Methods. These methods divide the space with spheres of inte-
ger radii and include:

—The Burkhard-Keller tree (BKT) [Burkhard and Keller 1973];
—The Fixed-queries tree (FQT) [Baeza-Yates et al. 1994];
—The Fixed-height fixed-queries tree (FHQT) [Baeza-Yates et al. 1994; Berman 1994];
—The multi-pivot modification of the BKT, which can be seen as a hybrid of the BKT

and the FQT.

These methods differ mostly in the approaches to choosing pivots (see Figure 2 on p.
14) and can be seen as variants of the BKT.

In the BKT, a pivot π is chosen arbitrarily (in our implementation, randomly). Then
dataset W is recursively divided into subsets W1, W2, . . .Wl such that elements of
Wi are at distance i from π. At query time, the search procedure recursively traverses
partitions i that satisfy |d(π, p)−i| ≤ k. The triangle inequality ensures the correctness
of this algorithm.

Each BKT node has exactly one pivot. In a multi-pivot modification of the BKT, a
node has t > 1 pivots [Chávez et al. 2001a]. For instance, if t = 2, dataset W is divided
into datasets Wi,j such that elements of Wi,j are at distance i form pivot π1 and at
distance j from pivot π2.

Fixed-query trees, the FQT and the FHQT, are basically BKTs where all nodes of
level i share the same pivot πi. In the FHQT, all leaves are located at the same level,
whereas in the FQT leaves can be located at different levels. Fixed-queries methods
have array-based implementations, where running time is traded for smaller index
size [Chávez et al. 2001b]. In our experimental setup this tradeoff does not make much
sense, because the BKT already has a small index overhead: only a small percentage
of the dictionary size (see Table IX, p. 65).

Another modification of the BKT, a parallel BKT (PBKT), was proposed by Fredriks-
son [2007]. Instead of a single pivot, each tree node stores a bucket of l strings and
uses one of them to build the hierarchical space decomposition. At search time, the
PBKT uses a bit-parallel algorithm to perform several computations at the same time:
the search algorithm computes the exact distance between the search pattern and the
pivot as well as verifies whether the edit distance between the search pattern and some
of the bucket strings does not exceed k.
According to results of Fredriksson [2007], PBKTs are an order of magnitude faster

than regular BKTs. However, we believe that the main reason for this improvement
is due to use of 128-bit arithmetic and logic operations provided through SSE2 ex-
tensions (available on Intel and AMD64 processors). We have not implemented the
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PBKT, because comparison of a method that uses 128-bit operations with a bit-parallel
baseline method that uses 32-bit operations would not be fair. In addition, enhanced
bit-parallelism provided through SSE2 extensions would considerably accelerate im-
plementations of all filtering methods, including unigram frequency vector tries (see
Section 7.2.3). Our implementations of string tries and FB-tries rely on bit-parallel
simulation of the non-deterministic Levenshtein automaton and, therefore, would im-
prove as well.

6.3.4. Distance-matrix Methods.. These methods involve computing and storing pairwise
distances for a large number of data points. These methods are superlinear in terms
of the index size and may be impractical for large datasets. An early distance-matrix
method called the AESA (Approximating and Eliminating Search Algorithm) was pro-
posed by Vidal [1986]. Its index is simply a matrix that keeps all N(N − 1)/2 pairwise
distances among dictionary strings.
The search algorithm consists in a recursive pruning of the set of candidate strings.

At the start, the set of candidate strings encompasses the entire dictionary. At each
step, the algorithm chooses a random pivot π from the set of candidate strings and
measures the distance ED(p, π) from π to the pattern p. One deterministic approach to
choosing a pivot consists in picking up the first element of the candidate set. The search
algorithm iterates over all elements in the current set to eliminate strings s that do
not satisfy ED(π, p) − k ≤ ED(π, s) ≤ ED(π, p) + k. Note that all distances ED(π, s) are
precomputed and need not be calculated at search time. The search process continues
until the candidate set is empty and the query is satisfied. Alternatively, the process
can stop when the candidate set contains at most B > 0 elements. Then these elements
are compared with the pattern directly.
The AESA is O(N2) in space and construction time that makes it impractical for all

but very small dictionaries. There are several modifications of the AESA that achieve
AESA-like performance while using much less space by computing either an approxi-
mate or a partial distance matrix:

—The LAESA stores only k rows of the distance matrix and uses O(kN) space [Micó
et al. 1994];

—The t-spanner AESA employs a t-spanner graph to approximate the distance matrix:
it stores explicitly only a few distances, while the rest is approximated within a
factor t. The resulting data structure uses about 3 percent of the size of the original
distance matrix [Navarro et al. 2002];

—The BAESA approximates the edit distance using b distance intervals. This allows
one to approximate the distance matrix using O(N2 log(b)) bits of space [Figueroa
and Fredriksson 2007].

Another well-known approach consists in partitioning of the dataset: a dictionary is
divided into m parts and each part is indexed using the AESA. At search time, one
has to execute m searches in m AESA sub-indices, which can be inefficient. To remedy
this problem, Fredriksson [2007] proposed a hybrid of the BKT and the AESA. At
the top level, the hybrid behaves exactly as the BKT: it uses arbitrarily chosen pivots
to recursively decompose the dictionary into buckets (subsets containing at most b
strings). Then it employs the AESA to index the strings inside the buckets. At search
time, the method calculates distances to pivots to eliminate the buckets that cannot
contain strings satisfying the query. Each bucket that is not discarded in the previous
step, is searched using its own AESA index.
There exist a number of metric space methods that do not guarantee retrieval of

all strings within distance k (see, e.g., [Chávez and Navarro 2003]). These methods,
however, are out of the scope of this survey.
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7. INDEXING METHODS BASED ON SEQUENCE FILTERING

7.1. Pattern Partitioning

An early description of a pattern partitioning method can be found in Knuth [1997], p.
394.18 Knuth noted that an original word and its slightly misspelled version probably
agreed in the first or in the second part. One of the first implementations of this idea
is described by Doster [1977].

Indexing of string fragments has been commonly used already in the 70s and 80s for
the purpose of document retrieval [Schuegraf 1973; Schek 1978; Willet 1979] and ap-
proximate dictionary searching [Angell et al. 1983]. These early works rely mostly on
common substring similarity measures (based on the number of common substrings,
e.g., q-grams). Jokinen and Ukkonen [1991] describe one of the first pattern partition-
ing methods that relies on the Levenshtein distance.

Classic partitioning algorithms search for pattern parts (features) in dictionary
strings. The most commonly used features are:

(1) regular q-grams: contiguous substrings of the same length q > 1;
(2) unigrams: q-grams of size one (individual characters);
(3) multi-grams: contiguous substrings of variable length [Schek 1978; D’Amore and

Mah 1985; Cho and Rajagopalan 2002; Navarro and Salmela 2009];
(4) q-samples: non-overlapping q-grams [Sutinen and Tarhio 1996; Navarro et al. 2001;

Navarro et al. 2005];
(5) gapped q-grams: non-contiguous string subsequences [Burkhardt and Kärkkäinen

2002].

For higher filtering efficiency, features are usually enhanced with information on
their positions in a string. In particular, one can use positional q-grams, i.e., pairs
(s[ρ:ρ+q−1], ρ).19

There are two common approaches to pattern partitioning: partitioning into exact
searching and intermediate partitioning. Partitioning into exact searching implies that
features are searched for exactly. Intermediate partitioning involves approximate fea-
ture searching. One variant of intermediate partitioning consists in searching for parts
of dictionary strings in the pattern. This method uses an index of dictionary q-samples.

In what follows, we review these approaches. These rely on several pattern partition-
ing properties that are only outlined here. A more detailed discussion, which includes
the case of transposition aware searching, is presented in Appendix A.

We also discuss possible implementations, focusing on partitioning into exact search-
ing and q-gram indexing.

7.1.1. Partitioning into Exact Searching. Partitioning into exact searching is based on the
following well-known observation (see Theorem A.2, Appendix A):

OBSERVATION 7.1. Let ED(p, s) ≤ k. If we divide the string p into k + 1 substrings
p1, p2, . . . , pk+1, then at least one pi is an exact substring of s. The position of the match-
ing substring differs from its original positing in p by at most k.[Wu andManber 1992b].

A transposition-aware modification is based on Theorem A.5. For simplicity of exposi-
tion, we explain only the transposition-unaware method.

Given the pattern p and the maximum allowed edit distance k, the search procedure
splits p into k + 1 contiguous substrings p1, p2, . . . , pk+1 starting at positions ρ1, ρ2, . . . ,
ρk+1 (ρ1 = 1). Then it retrieves all dictionary strings that contain at least one pi as an

18The first edition of the book was published in 1973.
19See, e.g., [Riseman and Hanson 1974], where positional q-grams are used for spell-checking without a
dictionary.
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exact substring starting at position τ such that |τ − ρi| ≤ k. An optimal partition can
be determined by using statistics of substring occurrences [Navarro and Baeza-Yates
1998; Navarro and Salmela 2009].
The crucial step of the search procedure is efficient retrieval of dictionary strings

that contain a specified substring. It can be implemented with the help of a suffix-
tree-like data structure (see Section 4.3). In this survey, we use a simpler method:
an inverted q-gram file. The inverted q-gram file keeps a list of q-grams that occur in
dictionary strings. The list of q-grams is indexed for faster access. For each q-gram, the
inverted q-gram file keeps a list of pointers to strings where this q-gram occurs. Such
an occurrence list is an inverted list.

A bit-sliced signature file is an alternative lossy representation of an inverted file,
where inverted lists are stored as bit vectors, i.e., signatures, and inverted lists of dif-
ferent q-grams can be OR-ed together. Although for the purpose of document retrieval,
the signature file has been shown to be inferior to the inverted file [Zobel et al. 1998],
there is no consensus on which data structure is better for approximate dictionary
matching. Zobel and Dart [1995] have stated that inverted files had “markedly better
performance” (but no detail is given). On the other hand, Carterette and Can [2005]
have demonstrated that the signature file has equivalent retrieval times and smaller
index size.

7.1.2. Inverted q-gram file. To construct an inverted q-gram file, an indexing procedure
iterates over the dictionary strings s and pads each s with q − 1 additional spaces on
the right (padding guarantees that, given a string u such that |u| < q, it is possible to
retrieve all strings s containing u as an exact substring). Then the indexing procedure
computes the list of positional q-grams of the padded string s′. Recall that a positional
q-gram is a pair (s[i:i+q−1], i), where i ≤ |s| − q + 1 is the starting position of q-gram
s[i:i+q−1]).
Positional q-grams are indexed using an inverted file. Given a positional q-gram

(u, i), its inverted list provides pointers to strings s′ such that s′[i:i+q−1] = u. To improve

running time, we also divide the inverted file into sub-indices, where each sub-index
corresponds to strings of the same length.
At search time, pattern p is split into k + 1 fragments p1, p2, . . . , pk+1 starting at

positions ρ1, ρ2, . . . , ρk+1 (ρ1 = 1). For each pi, the method uses the inverted file to
retrieve a list of pointers to strings that may contain pi as an exact substring at posi-
tions τ such that |ρi − τ | ≤ k. Then the search procedure merges pointer lists obtained
and removes duplicates. The result is the list of candidates for the checking step of the
method. At the checking step candidate strings are compared with the search pattern
element-wise. Note that the q − 1 spaces added at the indexing step are not used in
this comparison.
In what follows, we explain the substring search procedure in more detail focusing on

q-gram based implementation. Strings {s ∈ W} that contain pi as an exact substring
are easily found when |pi| = q (the length of substring pi is equal to the length of
q-gram).
Let |pi| > q and {vl} be the set of |pi| − q + 1 q-grams contained in pi. Note that vl

starts at position ρi + l− 1. For each vl, the search procedure retrieves inverted lists of
positional q-grams (vl, τl) such that |ρi + l − 1 − τl| ≤ k (the inverted lists contain only
word identifiers and do not keep information on q-gram positions). Then we compute
the union of these lists, which is denoted by Ui,l. It can be seen that the intersection
∩lUi,l contains pointers to all strings that have pi as an exact substring (starting at
position τ such that |ρi − τ | ≤ k). Yet, this intersection may include a few strings
that do not contain pi as an exact substring (because positions of q-grams vl do not
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exactly match positions inside dictionary strings).20 Such strings are eliminated by
direct comparison with the pattern. To save processing time, we can stop intersecting
lists Ui,l once the size of the intersection falls below a threshold [Zobel and Dart 1995],
because the cost of checking for an approximate match can be lower than the cost of list
processing. Alternatively, the search procedure may intersect only M lists Ui,l, where
M is a parameter chosen empirically.

If |pi| < q, the search procedure processes inverted lists of positional q-grams (piv, τ)
such that |ρi − τ | ≤ k. In words, it retrieves inverted lists of q-grams that have prefix
pi and start at position close to ρi. The union of these lists contains pointers to all
dictionary strings that include pi as an exact substring (at position τ such that |τ−ρi| ≤
k).

It is common to keep entries in inverted q-gram lists sorted by respective string iden-
tifiers. Then both unions and intersections of inverted lists S1 and S2 can be computed
using a merging algorithm in time proportional to |S1| + |S2|, where |S| is the number
of elements in list S (see, e.g., [Knuth 1997], p. 158). If one inverted list is much longer
than another, it is possible to compute an intersection more efficiently, e.g., by binary
searching for the elements of the shorter list in the longer list. In general, a shorter
running time can be achieved by applying an algorithm that adapts to input values
[Demaine et al. 2001; Baeza-Yates and Salinger 2005]. See also [Barbay et al. 2006;
Claude et al. 2009] for a description of efficient intersection algorithms.

If the pattern has fewer than k +1 characters, it cannot be split into k +1 non-empty
substrings. Formally, the pattern partitioning lemma is not applicable, if n < k + 1.
Furthermore, the strings shorter than 2k + 1 characters are not retrievable after k
deletions are applied (because respective search patterns would have fewer than k + 1
characters). Consider, for instance, s =ox, p =x, and k = 1.
Therefore all strings shorter than 2k + 1 characters have to be stored in a separate

index (in addition to the main q-gram index). This auxiliary index is used to satisfy
queries when |p| < k + 1. Otherwise, the main index is used.

For small k, we can store short strings as a plain file and search this file sequentially.
Sequential search is executed infrequently, only when |p| < k + 1. In our implementa-
tion, we use k auxiliary plain files: the i-th file contains strings of lengths from 2k − 1
to 2k. Another option would be to combine an inverted q-gram file with neighborhood
generation. Because we search for patterns shorter than k+1 characters, this approach
is efficient.

7.1.3. Intermediate Partitioning. Intermediate partitioning is based on Theorem A.2 and
Theorem A.5, see Appendix A, p. 76. For simplicity of exposition, we outline only the
transposition-unaware method based on Theorem A.2.
At query time, the pattern p is split into j ≥ 1 fragments pi, starting at positions ρi.

These fragments are used to find dictionary strings s such that

ED(s[τ1:τ2], pi) ≤ ⌊k/j⌋

for some τ1 satisfying |ρi − τ1| ≤ k. The result of approximate substring searching
is a list of candidate strings, which are compared with the pattern p element-wise. An
important step is to find dictionary strings that contain pi as an approximate substring.
There are three common approaches for accomplishing this task.

20Consider, for instance, p =potential, q = 2, and k = 1, The above-described method will retrieve the
string s =posterior, because the latter contains q-grams “po” and “te” starting in positions 1 and 3. Yet,
the string “posterior” does not have the substring “pote”.
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The first approach employs the suffix tree (see Section 4.3). Approximate searching
is carried out using the backtracking algorithm described in Section 6.1.1. The same
algorithm can be simulated over the suffix array [Navarro and Baeza-Yates 2000].

In the second approach, approximate substring searching is reduced to exact search-
ing by generating a neighborhood of pi. The neighborhood can be full, condensed [My-
ers 1994], or super-condensed [Russo and Oliveira 2005]. The advantage of this ap-
proach is that the neighborhood of pi can be much smaller than the full pattern neigh-
borhood.
Dictionary strings containing neighborhood elements as exact substrings can be re-

trieved with the help of the inverted q-gram file as described in the Section 7.1.2. Note
that intermediate pattern partitioning methods do not need an additional index to
handle short patterns.
For j = 2, there exists an important variant of intermediate pattern partitioning

theorem that we discuss in Section 6.1.2. A very efficient method – FB-trie – is based
on this theorem.
The third approach searches for dictionary q-samples inside the pattern. It is dis-

cussed in Section 7.1.4.

7.1.4. q-sampling. The idea of using q-samples for on-line searching was suggested by
Sutinen and Tarhio [1996]. Based on this idea, Navarro et al. [2005] proposed an index-
ing method for approximate substring searching. In what follows, we discuss a mod-
ification of this method tailored to (transposition-aware) dictionary searching. It con-
sists in indexing every h-th q-gram (h ≥ q) of dictionary strings. Such non-overlapping
q-grams are called q-samples. One can see that the resulting index requires less space
than the index that keeps all q-grams of dictionary strings.
Formally, for every dictionary string s, we collect j = ⌊|s|/h⌋ substrings s[1:q],

s[h+1:h+q], . . . , s[(j−1)h+1 : (j−1)h+q] and index them using the inverted file. The list of
the unique q-samples, i.e., the dictionary of the inverted file, is stored as the trie.
In the case of transposition-aware searching one should choose h > q. Otherwise,

a single transposition can modify two q-samples (see Observation 7.5 below). An al-
ternative solution for the case h = q consists in indexing additional j − 1 q-samples.
The i-th additional q-sample is obtained from the i-th original q-sample s[(i−1)q+1 : iq] by
replacing its last character with s[iq+1].
The search algorithm identifies dictionary strings containing q-samples that match

a substring inside the pattern approximately. This step provides a list of candidates
that are directly compared with the search pattern. Below, we discuss this algorithm
in detail.

OBSERVATION 7.2. Let ED(p, s) ≤ k and u be a substring of s. Then, there is a
substring v of p such that ED(u, v) ≤ k.

This observation immediately follows from the definition of the optimal alignment
(see Section 2.2) and holds for both the Levenshtein and the Damerau-Levenshtein
distance.

THEOREM 7.3. Let ED(p, s) ≤ k and the string s be partitioned into 2j contiguous
(possibly empty) substrings: s = s1u1s2u2 . . . sjuj . Then, the string p contains j sub-
strings pi such that

j
∑

i=1

ED(pi, si) ≤ k (17)

COROLLARY 7.4. The sum of j non-negative terms ED(pi, si) in Inequality (17) is at
most k. Therefore, there exists l such that ED(pl, sl) ≤ ⌊k/j⌋.
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In the case of the Levenshtein distance, Theorem 8.3 follows from Lemma A.1 (p. 75)
and Observation 7.2. The proof consists in applying edit operations (in increasing order
of modified substring positions) and registering the changes.

OBSERVATION 7.5. In the case of the Damerau-Levenshtein distance, Theorem 7.3
holds only if ui 6= ǫ for all i < j.

To see why this observation is true, consider an example of the string s =abcd par-
titioned into substrings s1 = ab and s2 = cd (u1 = u2 = ǫ). Consider also the string
p =acbd obtainable from s by one transposition. Note that both s1 and s2 match any
substring inside p with one or two errors. Therefore, the sum in Inequality (17) is at
least 2, whereas k = ED(p, s) = 1.

Let ρi be the position of the substring si in s. We divide all insertions and deletions
into two groups. There are k′ ≤ k insertions/deletions applied before the position ρi

and at most k − k′ insertions/deletions applied at or after the position ρi. As a result
of applying k′ edit operations from the first group, the position of si cannot increase or
decrease by more than k′. After applying operations from the second group, the length
of si cannot increase by more than k − k′. Therefore, the following observation is valid:

OBSERVATION 7.6. A substring of p that approximately matches si starts at or after
the position ρi − k and ends at or before the position ρi + |si| + k − 1.

Assume now that we have an inverted file of q-samples and s is a dictionary string
such that ED(p, s) ≤ k. Because |s| ≥ |p| − k = n − k, the inverted file should contain
at least j = ⌊(n − k)/h⌋ q-samples from s. According to Theorem 7.3 and Observation
7.6, each q-sample of s matches a substring of p with at most k errors. Note that the
i-th q-sample of s has a match within the pattern substring wi = p[(i−1)h+1−k : ih+k].
Furthermore, the sum of edit distances between q-samples and respective approximate
matches inside p should not exceed k. This sum is represented by Inequality (17).

Thus, to answer an approximate dictionary query, one can retrieve strings satisfying
Inequality (17). This can be achieved through computing a lower bound for ED(p, s),
termed as a cumulative best match distance. This lower bound is equal to the sum of
the best (i.e., minimum) edit distances between consecutive q-samples of the string s
and substrings within wi:

j
∑

i=1

BED(wi, s[(i−1)h+1 : (i−1)h+q]), (18)

where BED(w, u) = min
1≤i1≤i2≤|w|

ED(w[i1:i2], u).

Navarro et al. [2005] proposed to use wi = p[(i−1)h+1 : ih+q−1+k], but we omit the justi-
fication. Because the pattern substrings are extended only to the right (as opposed to
extending each pattern piece by k characters in both directions), this approach does not
guarantee that the i-th q-sample is necessarily aligned with pi in Equation (18). More

specifically, there exists t ≥ 0 such that
∑j

i=1 BED(wi, s[(t+i−1)h+1 : (t+i−1)h+q]) ≤ k.
To evaluate the cumulative best match distance, one may retrieve all q-samples that

occur as approximate pattern substrings with at most k errors. A more practical ap-
proach is to estimate the cumulative best match distance, rather than compute it ex-
actly. This estimate should be a lower bound for ED(p, s).
To this end, we only retrieve q-samples that match substrings inside wi with at most

ke errors, where the parameter ke satisfies ⌊k/j⌋ ≤ ke ≤ k. Additionally, we require
that ke < q. Otherwise, every q-sample is retrieved, because it matches a substring of
p with q errors.
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The choice of ke involves a tradeoff: the smaller ke is, the less time is spent on com-
puting the lower bound. On the other hand, smaller values of ke lead to “looser” lower
bounds and, therefore, entail higher verification costs.
The search algorithm is as follows. Assume that every dictionary string is associated

with j variables Bi. The initial values of the variables are equal to ke + 1. The search
procedure uses the trie to identify all q-samples that have a match inside the pattern
substrings wi with at most ke errors.
Let the q-sample u be an approximate substring match of wi with k′ errors. Then,

for every dictionary string such that its i-th q-sample is equal to u, the variable Bi is
reset to min(Bi, k

′). If the sum of variables assigned to the string s becomes smaller
than k + 1, we add s to the list of candidates for subsequent verification.
From Corollary 7.4 and the condition ke ≥ ⌊k/j⌋, it follows that every dictionary

string s such that ED(p, s) ≤ k contains a q-sample that matches a substring of p within
ke errors and, thus, will be examined by the algorithm. Note that it is not necessary to
maintain Bi for every dictionary string: the algorithm has to allocate variables Bi for
the string s the first time it encounters a q-sample of s.
The parameter ke satisfies: ⌊k/j⌋ ≤ ke < q, which implies that k/j ≤ q. Because q ≤ h

and j ≤ (n − k)/h, the method is applicable only if n, h, and k satisfy:21

hk

n − k
≤ h ⇒ n ≥ 2k. (19)

From Inequality (19) it follows that, similar to the inverted q-gram file, the method is
not applicable for short patterns.

7.2. Vector Space Frequency Distance Methods

Vector space search methods can be seen as variants of pattern partitioning methods,
which involve conversion of features (usually q-grams and unigrams) into frequency
vectors or signatures. These methods have been often discussed in the literature. In
particular, the idea of using string signatures to filter out strings that do not match
the search pattern was proposed by Damerau [1964]. Unigram and q-gram signatures
have been extensively used for “dictionaryless” spell-checking in the 70s, see the review
by Kukich [1992] and references therein. Vector space methods are also employed in
computational biology [Ozturk and Ferhatosmanoglu 2003; Kahveci et al. 2004; Wang
et al. 2009].
In this survey, we focus on methods that use frequency distance (see Section 2.3

for a definition of frequency distance). A number of papers explore the possibility of
using the Hamming distance in place of frequency distance, see, e.g., [Giladi et al.
2002; Gollapudi and Panigrahy 2006]. Given strings p, s, and their unigram frequency
vectors vect(p) and vect(s), the Hamming distance between vect(p) and vect(s) can
be twice the edit distance between p and s,22 whereas the frequency distance between
vect(p) and vect(s) is always a lower bound for the edit distance between p and s.
Because frequency distance is a better estimate of the edit distance than the Hamming
distance, we discuss and implement only frequency distance based methods.
Given a projection of strings into a low-dimensional vector space, we substitute orig-

inal string queries (with the maximum allowed edit distance k) by frequency distance
queries in the projected space. According to Inequality (11), p. 13, the maximum al-

21For transposition-aware search, one has to index artificial q-samples or to choose h ≥ q + 1.
22Consider, for instance, a single substitution in a string s that modifies exactly two elements of the fre-
quency vector vect(s).
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lowed frequency distance in the projected space is

k · (q + [transposition-aware and q > 1])

This depends on the maximum allowed edit distance k, the size of q-gram q, and the
type of query (transposition-aware or transposition-unaware searching).

For efficient retrieval, frequency vectors or signatures are indexed using general vec-
tor space methods. Dimensionality is reduced via hashing: a hash function is used to
map the original alphabet Σ to a reduced alphabet σ of a smaller size (see a discussion
in Section 7.2.2)

Dictionary strings are grouped into buckets based on their frequency vectors. For
each vector x, a vector space data structure stores a pointer to the bucket that contains
strings mapped to the frequency vector x.
The filtering step gives a list of candidate strings, which are compared with the

pattern element-wise using an efficient on-line checking algorithm (outlined in Section
5, p. 19). Because FD(signat(p), signat(s)) ≤ FD(vect(p), vect(s)), the signature-based
search is carried out with the same threshold.

A string can be transformed into either a unigram or a q-gram sequence, which can
be then converted into a frequency vector or a signature. Therefore, there are four
scenarios of mapping to vector space, which involve transformation of strings into:

(1) unigram frequency vectors;
(2) q-gram frequency vectors (q > 1);
(3) unigram signatures;
(4) q-gram signatures (q > 1).

We have implemented methods for scenarios 1, 2, and 3. In what follows, we briefly
overview these implementations as well as respective vector space data structures and
dimensionality reduction methods.

7.2.1. Space Decomposition Tree. To efficiently satisfy frequency distance queries, we
use data structures designed for searching in multidimensional spaces. Based on their
approach to data organization, multidimensional search methods can be classified
into space-partitioning methods and data-partitioning methods (see, e.g., [Weber et al.
1998]).

Space-partitioning search methods recursively decompose space into mutually dis-
joint parts (usually along predefined hyperplanes). They include the KD-tree [Bentley
1975; Friedman et al. 1977], the K-D-B-tree [Robinson 1981], the KD-trie [Orenstein
1982], and the grid file [Nievergelt et al. 1984], to name a few.

Data-partitioning search methods divide data rather than space. These methods in-
clude the RD-tree [Hellerstein and Pfeffer 1994], the R-tree [Guttman 1984] as well
its modifications such as the R+-tree [Sellis et al. 1987] and the R*-tree [Beckmann
et al. 1990]. For a detailed discussion we refer the reader to the surveys by Gaede and
Günther [1998], Böhm et al. [2001], as well as to the books by Faloutsos [1996] and
Samet [2005].

Data partitioning methods divide a dataset using bounding rectangles or spheres
that often have overlapping regions. These are essential only for spatial data, e.g.,
for polygons and lines, but not for point data. As noted by Roussopoulos and Leifker
[1985], Samet [1995], and others, these overlaps often result in poor performance.
Therefore, we concentrate on space partitioning methods.

We employ a vector trie and the KD-tree, because they are efficient and easy to im-
plement. Both methods were described in and implemented for the conference version
of this survey [Boitsov 2004], but its likely that earlier references exist. In particular,
there are a number of similar methods. Mochizuki and Hayashi [2000] suggested to
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index q-gram signatures in a trie to answer exact substring queries. Ozturk and Fer-
hatosmanoglu [2003] as well as Jeong et al. [2010] indexed q-gram frequency vectors
using R-trees. Wang et al. [2009] proposed to combine the vector trie with the inverted
q-gram file.
The vector trie is the path-compressed trie (See Section 4.2) that is built on coor-

dinate vectors. The KD-tree [Bentley 1975; Friedman et al. 1977] is a binary space
decomposition tree that uses hyperplanes perpendicular to one of the coordinate axes.
Every non-leaf node ξ is associated with a bounding rectangle and a hyperplane that
divides this rectangle into two parts. Each part represents a child node of ξ. The divid-
ing hyperplane is defined by equation xd = a, where d is a discriminating dimension.
There are several approaches to choosing d. One approach is to choose d in a cyclic
manner. The KD-tree may degenerate to linear searching and requires periodic rebal-
ancing to ensure efficient retrieval. For semi-static dictionaries, however, balancing
costs are spread over multiple retrieval and update operations.
It can be seen that both KD-trees and vector tries belong to the class of methods

that divide the space with axis-orthogonal hyperplanes. An indexing algorithm of such
method starts from the whole space and divides it into bounding (hyper) rectangles
that do not intersect except along edges. Then the indexing algorithm proceeds recur-
sively on each of the bounding rectangles until it reaches a desired level of granularity.
The result is a hierarchical decomposition of space into nested bounding rectangles,
which is best represented as a tree.
A search algorithm recursively traverses the tree and discards all the nodes ξ such

that a frequency distance between vect(p) (pattern frequency vector) and the bounding
rectangle of the node ξ is above a search threshold.
According to results of preliminary experiments, all of our trie-based implementa-

tions are slightly more efficient than KD-tree-based implementations. Therefore, we
index frequency vectors using tries.

7.2.2. Dimensionality Reduction. It is well-known that vector space search methods per-
form poorly in high-dimensional spaces [Weber et al. 1998; Chávez et al. 2001a]. This
phenomenon is known as the “curse of dimensionality”. Weber et al. [1998] have shown
that every nearest neighbor search method degrades to sequential searching if the
number of dimensions is sufficiently large. In particular, R*-trees [Beckmann et al.
1990] and X-trees [Berchtold et al. 1996] are outperformed by a linear scan when the
number of dimensions is greater than 10, and by a vector approximation file (VA-file)
when the number of dimensions is greater than 6 [Weber et al. 1998].

The size of a frequency vector is equal to the size of the alphabet. Because all major
natural language alphabets have more than 20 characters, the curse of dimensionality
poses a serious problem for indexing both q-gram and unigram frequency vectors. To
decrease dimensionality, we use a commonly known method that involves hashing. It
consists in projecting of the original alphabet Σ to an alphabet σ of a smaller size using
a hash function h(c).
The hash function h(c) induces a character-wise projection from Σ∗ to σ∗. Given a

string s, vect(h(s)) is a reduced frequency vector of s. Recall that the size of a string
frequency vector is equal to the size of the alphabet. Therefore, the size of reduced
frequency vector vect(h(s)) is smaller than the size of original frequency vector vect(s)
(because |σ| < |Σ|). Further, we note that for any two strings p and s, a frequency
distance between reduced frequency vectors is also a lower bound for the edit distance
between p and s:

FD(vect(h(p)), vect(h(s))) ≤ ED(h(p), h(s)) ≤ ED(p, s).
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In addition, this inequality holds if we substitute p and s with arbitrary q-gram se-
quences, which are strings over Σq.

Consequently, we can use hashing to map data points from a high-dimensional vec-
tor space, where the number of dimensions is |Σ|q, to a low-dimensional vector space,
where the number of dimensions is |σ| (the size of the reduced alphabet). We can then
execute frequency distance queries in the space of reduced frequency vectors using
the same threshold value as in the original vector space. A brief description of hash
functions used in our experiments is given in Appendix B.

7.2.3. Unigram frequency vector trie. A unigram frequency vector trie uses conversion of
strings to unigram frequency vectors, which are treated as strings over a finite alpha-
bet. These strings are indexed using the path-compressed trie (see Section 4.2). Let
z = vect(p) be the frequency vector of the search pattern p.

The search procedure is a recursive traversal of the trie. Whenever it reaches a node
ξ, which spells vector u of the length l, the frequency distance between u and the prefix
of z of the length l has been calculated. It can be seen that this value represents the
frequency distance between vect(p) and the bounding rectangle that corresponds to the
node ξ. Recursion continues while this distance does not exceed the maximum allowed
distance k.

The result of this search is a list of frequency vectors x such that FD(x, z) ≤ k.
For each vector found in the trie, the search procedure retrieves the list of respective
strings and compares them with the search pattern.

7.2.4. q-gram frequency vector trie. A q-gram frequency vector trie employs conversion of
strings to q-gram frequency vectors (q > 1). Then, similarly to the unigram frequency
vector trie, q-gram frequency vectors are stored using the path-compressed trie (see
Section 4.2). The only difference is that, at search time, the q-gram frequency vector
trie a uses larger threshold value that is equal to (see Section 2.3.3, p. 13):

k · (q + [transposition-aware]).

7.2.5. Signature hashing. This simple folklore approach employs conversion of strings
into small unigram signatures. Dictionary strings are stored as a hash table. A string
signature is essentially an integer value, which is used as a hash table slot number.
Collisions in the hash table are resolved via chaining: a slot in the hash table that
corresponds to a signature x contains a pointer to the list of strings {wi} such that
signat(wi) = x.

At search time, the method scans hash table slots to find all signatures x such that
FD(x, z) ≤ k, where z = signat(p) is the signature of the search pattern. To make
sequential scan efficient, we choose the signature size m so that the total number of
signatures 2m is small in relation to the number of dictionary strings. The optimal
value of m is determined experimentally.

8. EXPERIMENTS

8.1. Experimental Setup

Experiments are conducted on an Intel Pentium PC running Linux (kernel 2.6.x). This
PC is equipped with a 2 GHz Intel Mobile processor and 2 GB of RAM. At test time,
we stop most unessential background processes. Further, each experimental series is
run twice and the shortest obtained time is reported.23

23Infrequently, some OS daemons, e.g., a swap daemon, would activate and use the processor resources. The
probability of such event is greatly decreased, if the series is run twice.
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Table III: Natural Language Dataset

String length statistics

Dataset name |Σ| 0.2M 0.4M 0.8M 1.6M 3.2M

English synthetic 27 2–27/9.3 2–28/9.5 2–28/9.6 2–28/9.8 2–28/10.0

Russian synthetic 33 2–25/10.5 2–25/10.5 2–25/10.6 2–25/10.7 2–25/10.9

ClueWeb09 36 1–32/6.9 1–32/7.2 1–32/7.4 1–32/7.8 1–32/8.1

Notes: String length statistics is given in the form: minimum–
maximum/average length. M stands for million dictionary entries.

All search methods were implemented in C++ from scratch.24 The correctness of
most implementations has been checked using automated tests. The exception is our
simplified implementation of the k-errata tree by Cole et al. [2004], which supports
only membership queries and, therefore, has been tested less rigorously.

Automated testing involves building an index over the dictionary W ′ that contains
5 thousand strings. Then for the first hundred strings s ∈ W ′, we generate a full one-
neighborhood, a partial two-neighborhood, and a partial three-neighborhood. For each
string s′ from a generated k-neighborhood, the automated test checks whether the
original string s can be found in the index over W ′ within k errors using the string s′

as the pattern.
In addition, we carry out preliminary tests to determine the optimal parameters

that include a signature size, vector size, size of the reduced alphabet, q-gram size,
and bucket size for the BKT.

8.1.1. Performance Measures and Relationships of Interest. We use the following perfor-
mance measures:

— Average in-memory retrieval time (all indices are stored in RAM; external mem-
ory, i.e., hard disk, is not involved at search time).
— Index size.
— Filtering efficiency, which is calculated as 1 − Ncheck/N . Ncheck is the number of

verifications performed during the checking step. Because some of the methods may
verify the same string more than once, the number of verifications can be greater than
the number of dictionary strings N . In such a case, the filtering efficiency is negative.
— Ratio of retrieval time for a transposition-aware implementation to retrieval time

for a transposition-unaware implementation, i.e., the “cost” of treating transposition
as a basic edit operation.

Our primary goal is to study relationships between retrieval time and:

— the maximum allowed edit distance k;
— the number of dictionary strings N ;
— the index size;
— the length of the pattern and/or indexed strings.

8.1.2. Datasets. We use natural language datasets and DNA datasets. Natural lan-
guage datasets include: Russian and English synthetic datasets as well as a web
dataset ClueWeb09. Each natural language dataset consists of five dictionaries con-
taining 0.2, 0.4, 0.8, 1.6, and 3.2 million unique strings. Their characteristics are sum-
marized in Table III.

24We have also implemented a version of inverted q-gram file that uses Berkeley DB, but it turned out to be
inferior to a custom implementation.
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Table IV: DNA Dataset

String length Range for the number Number of

Dataset name |Σ| range dictionary strings dictionaries

DNA-11 4 11 0.2M–3.2M 5

DNA-20 4 20 0.2M–3.2M 5

DNA-Var 4 11–20 0.2M 10

Note: M stands for million dictionary entries.

Synthetic datasets are generated using a Markov model: the probability of any spe-
cific character occurrence in the i-th position of string s is a function of i, the string
length, and of the preceding trigram s[i−3:i−1]. The probabilities are estimated using
the real English and Russian dictionaries obtained from a publicly available distribu-
tion of the open-source spell-checker Ispell [Kuenning et al. 1988]. The alphabet of the
synthetic English dataset has 27 characters: 26 Latin letters and an apostrophe. The
alphabet of the synthetic Russian dataset consists of 33 Cyrillic characters.
To ensure that the implemented methods produce similar results on real and syn-

thetic data, we create synthetic dictionaries containing the same number of entries
as original Ispell dictionaries. Then we compare retrieval times obtained for synthetic
dictionaries and Ispell dictionaries.

The web dataset consists of frequent words extracted from the subset B of the
TREC25 collection ClueWeb09.26 This dataset contains mostly English web-pages. Dur-
ing extraction all punctuation is ignored. In addition, we exclude all words with charac-
ters other than Latin letters or digits. ClueWeb09 includes five dictionaries containing
0.2, 0.4, 0.8, 1.6, and 3.2 million most frequently occurring words, respectively. Among
all our datasets, ClueWeb09 has the largest alphabet of 36 characters: 26 Latin letters
and 10 digits.

DNA datasets include DNA-11, DNA-20, and DNA-Var. They contain substrings ran-
domly extracted from a human genome.27 The alphabet of any DNA set has only 4
characters: A, G, C, T. During random extraction, a small number of DNA pieces con-
taining a wildcard character N are ignored. DNA-11 consists of sequences that are 11
characters long. This is the minimum length l such that there exist 3.2 million unique
DNA sequences of the length l. DNA-20 contains strings of the length 20. The charac-
teristics of DNA datasets are summarized in Table IV.

Similar to natural language datasets both DNA-11 and DNA-20 include five dictio-
naries containing 0.2, 0.4, 0.8, 1.6, and 3.2 million DNA sequences. DNA-Var encom-
passes 10 dictionaries Wi (11 ≤ i ≤ 20). Each Wi contains 0.2 million DNA sequences
of the length i.

8.1.3. Testing Approach. The testing procedure is carried out in two steps. First, we cre-
ate an in-memory index and evaluate average retrieval time. Next, we build a compact
index in external memory and evaluate the size of the index. This step is essentially a
serialization of the in-memory index.

There are three different test scenarios:

(1) The first scenario is designed to study how retrieval time depends on the number
of dictionary strings N and the maximum allowed edit distance k. This scenario

25Text REtrieval Conference, http://trec.nist.gov
26http://boston.lti.cs.cmu.edu/Data/clueweb09/
27http://genome.ucsc.edu/ and http://hgdownload.cse.ucsc.edu/downloads.html
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Table V: Summary of implemented methods

Method type Method name Search complexity
(upper bound for
the average case)

Index overhead

Direct methods

Prefix Trees String trie O
“

nk+1|Σ|k
”

O(N(P + 1))

FB-trie N/A O(N(P + 1))

k-errata tree O

 

n +
(6 log2 N)k log log λN

k!
+ 3k · occ

!

O

 

N
(5 log2 N)k

k!

!

Neighborhood
generation

Full neighborhood
generation

O
“

nk+1|Σ|k
”

O(N)

Super-condensed
neighborhood
generation

N/A O(λN)

Reduced alphabet
generation

O

„

nk+1|σ|k


1 +
L(n,k)
|σ|n

ff«

O(M1(N))

Mor-Fraenkel method O

 

nk+1

(

1 +
nk−1L(n,k)

|Σ|n−k

)!

O((λm)k+1N)

Hybrid neighborhood
generation-t

O

0

@nk+1|Σ|k−k′
8

<

:

1 +
nk′−1L(n,k′)

|Σ|n−k′

9

=

;

1

A ,

k′ = min(k, t)

O((λm)t+1N)

Metric space
methods

BKT O
“

Nβ1(k)
”

, β1(k) < 1 O
“

λmP min
“

N,
“

N
b

”γ””
,

for some γ > 0

Sequence-based filtering methods

Pattern
partitioning

Length-divided
inverted q-gram
index

O (β2(k)N) O(λm|Σ|q + αcompλNP )

Mapping to
vector space

Unigram frequency
vector trie

O (β3(k)N) O(mM2(N))

Q-gram frequency
vector trie

O (β4(k)N) O(mM3(N))

Signature hashing O (β5(k)N) O(2mP )

Notes: N is the number of dictionary strings, n is the pattern size, q is the size of the q-gram;
λ is the average length of the dictionary string, λm is the maximum length of the dictionary string;
L(n, k) = max|i−n|≤k N(i), where N(i) is the number of dictionary strings containing i characters;

occ is the number of approximate pattern occurrences in the dictionary;
|Σ| denotes the size of the original alphabet, |σ| denotes the size of the reduced alphabet;
m is the size of the frequency vector or the signature;
Mi(N) is the number of (q-gram) frequency vectors or reduced dictionary strings, usually Mi(N) ≪ N ;
P is the pointer size, αcomp is the compression ratio, βi(k) are positive-valued functions.

Table VI: Method Parameters

Synthetic data sets ClueWeb09 DNA data sets
(English and Russian)
|σ| q-gram bucket |σ| q-gram bucket |σ| q-gram bucket

size size size size size size

BKT 200 200 75

Length-divided inverted q-gram file 4 3 4

q-gram frequency vector trie 9 2 9 2 8 2

Reduced alphabet neighborhood
generation

3 5 3

Signature hashing 13 13

Unigram frequency vector trie 10 10 4

Note: |σ| is the size of the reduced alphabet, the frequency vector, or the signature.
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uses synthetic datasets (English and Russian), ClueWeb09, DNA-11, and DNA-20.
Each dataset is represented by five dictionaries containing from 0.2 to 3.2 million
strings. However, due to memory restrictions, some of the methods are tested using
only a subset of smaller size dictionaries.
For every dictionary and edit distance k = 1, 2, 3, we create a set of 1000 test pat-
terns in two stages. First, we randomly select a dictionary string. Second, we ran-
domly select the pattern from a k-neighborhood of the selected string.28

(2) The second scenario is designed to study how retrieval time depends on the length
of indexed strings. It employs the dataset DNA-Var, which includes 10 dictionaries.
Each dictionary contains 0.2 million DNA sequences of the same length (see Table
IV). The patterns are generated from dictionary strings by applying up to k edit
operations similarly to the first scenario.

(3) In the third scenario, which is more appropriate for natural languages, there is a
single dictionary and multiple sets of patterns. This scenario is designed to study
the relationship between retrieval time and pattern length. The dictionary con-
tains 0.2 million strings (of various lengths). Each set of patterns contains 1000
strings of the same length (generated similarly to the first scenario). There are
11 sets of patterns of lengths varying from 5 to 15. We use this scenario with two
datasets: synthetic English and ClueWeb09.

8.2. Implemented Methods and Comparison Baseline

The implemented search methods are listed in Table V. In columns three and four
we summarize well-known theoretical results for the upper bound of average retrieval
time and index overhead, i.e., the arithmetic difference between the size of the index
and the size of the dictionary. Details are provided in Appendix C. Empirically deter-
mined parameters of the methods are listed in Table VI. In the following subsections,
we briefly review implemented methods. We also describe a sequential search method
used as a comparison baseline.

8.2.1. Direct Indexing Methods. Direct methods are represented by prefix trees, neigh-
borhood generation, and metric space methods.

We have implemented the following modifications of prefix trees:

— The string trie is a tree where strings with a common prefix belong to the same
subtree. The search algorithm is essentially a parallel traversal of the tree and the
Levenshtein automaton (Section 6.1.1, p. 20).

— The FB-trie uses an additional trie built over reversed dictionary strings to im-
prove performance over the regular string trie (Section 6.1.2, p. 22). FB-trie is a hybrid
method that combines prefix trees and pattern partitioning.

— The k-errata tree blends partial neighborhood generation with tries and treats er-
rors by recursively creating errata trees from subtrees of the regular trie (Section 6.1.3,
p. 23). This process involves merging of subtrees: to reduce memory requirements, we
use shallow copying whenever possible. A longest common prefix index proposed as a
part of k-errata tree does not make much sense for short patterns. Therefore, we do not
use it in our implementation. Note that our simplified implementation fully supports
only membership queries.

Implemented neighborhood generationmethods include the classic algorithm as well
as several hybrid methods:

28In the case of k = 1, we choose the pattern from the full k-neighborhood, for k = 2 and k = 3, however, we
use a partial neighborhood. For k = 3 and natural language data, most neighborhood generation methods
are slow. Therefore, only 100 patterns are used.
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— Full neighborhood generation is a well-known folklore method that computes the
full k-neighborhood of the pattern (all strings within distance k) and searches for its
members for an exact match using hashing (Section 6.2, p. 25).

— Super-condensed neighborhood generation is a filtering method that employs a
substring-free, i.e., super-condensed, neighborhood to retrieve candidate strings (Sec-
tion 6.2.3, p. 27). Substring dictionary searching is carried out using an inverted file,
which indexes substrings obtained from a dictionary string by deleting i1 prefix char-
acters and i2 suffix characters (for all i1 + i2 ≤ 2k). This implementation is a proof of
concept: the inverted file is fast, but not space-efficient. Because generation of a super-
condensed neighborhood is slow in the case of a large alphabets and natural language
data, we test it using only DNA data.
— Reduced-alphabet neighborhood generation is a filtering method that employs a

lossy string representation obtained by alphabet hashing (Section 6.2.5, p. 28). The
reduced alphabet is small and it takes little time to generate the full neighborhood.
The checking step of the method is very efficient: it has linear time with respect to the
total length of candidate strings.
— The Mor-Fraenkel method is an intermediate approach that computes deletion-

only l-neighborhoods (l ≤ k) of dictionary strings during the indexing. At query time,
it computes the deletion-only l-neighborhoods of the pattern and searches for its mem-
bers exactly. The case k = 1 is explained in Section 6.2.7, p. 30; the general case is
presented in Section 6.2.8, p. 30 and in Section 6.2.9, p. 31.
— Hybrid neighborhood generation methods combine full query-time neighborhood

generation with Mor-Fraenkel method (Section 6.2.11, p. 34). The rationale behind this
approach is to reduce space requirements of Mor-Fraenkel method, which is often im-
practical for k > 1. We have implemented two modifications of hybrid neighborhood
generation. Hybrid neighborhood generation-1 uses less memory and precomputes
one-deletion neighborhoods. Hybrid neighborhood generation-2 precomputes both one-
deletion and two-deletion neighborhoods. For short patterns, we resort to full neigh-
borhood generation: as a rule of thumb, full neighborhood generation is applied only
when k = 3 and |p| < 5.

Implemented metric space methods include BKTs and its modifications:

— The BKT recursively divides the space based on the distances to pivot elements
(Section 6.3, p. 34). The process stops when the number of strings in each partition (i.e.,
a bucket) becomes less than or equal to b (bucket size). At query time, the BKT prunes
the space using the triangle inequality. This requires calculating distances from the
pattern to selected pivots. Note that strings inside the buckets are compared with the
pattern using a fast online checking algorithm outlined in Section 5, p. 19.

— The multi-pivot modification of the BKT that uses more than one pivot per node.
— The hybrid of the BKT and the AESA (Section 6.3.4, p. 36). At the top level this

method behaves as the BKT. Strings inside each bucket are indexed using the AESA:
for each pair of strings si and sj in the bucket, the method precomputes and stores the
edit distance ED(si, sj) between them.

In the case of DNA dictionaries, the distance to pivots is computed using an effi-
cient bit-parallel algorithm proposed by Myers [1999]. This algorithm was extended
by Hyyrö [2005] to handle transpositions. Note, however, that the Myers-Hyyrö algo-
rithm computes the so-called restrictedDamerau-Levenshtein distance, which does not
always satisfy the triangle inequality (see Section 2.2 for a detailed discussion). As a
result, the respective transposition-aware implementation is prone to a small number
of false misses, which accounts for 0.1 to 0.2 percent of failures during our functional
testing.
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Given our focus on lossless solutions that guarantee retrieval of strings within a
specified edit distance k, we do not use this algorithm for natural language dictionar-
ies. Instead, we employ a less efficient algorithm of Lowrance and Wagner [1975] (see
Equation (6) on p. 11 and the pseudo-code in Appendix D.3). This does lead to perfor-
mance deterioration, but the difference is not significant.

8.2.2. Indexing Methods Based on Sequence Filtering. The methods in these groups include
pattern partitioning methods and vector space frequency distance methods.
Pattern partitioning methods are represented by:

— The length-divided q-gram file (Section 7.1.2, p. 38). The idea of the method con-
sists in creating an inverted file that allows one to find all strings containing a given
q-gram. The inverted lists are sorted by respective string identifiers and compressed
using the variable-byte encoding (see Appendix C.5.3). The length-divided q-gram file
can be considered as a hybrid method, because it blends pattern partitioning with di-
vision of the index based on the string length. For patterns shorter than k + 1, it uses
sequential searching on the subset of dictionary strings shorter than 2k + 1.

There are several pattern partitioning methods that improve over classic q-gram in-
dices: intermediate pattern partitioning [Navarro and Baeza-Yates 2000], indexing of
gapped q-grams [Burkhardt and Kärkkäinen 2002], q-samples [Navarro et al. 2005],
and equi-probable multi-grams [Schek 1978; Navarro and Salmela 2009]. Retrieval
time can also be improved through computing an optimal partitioning [Navarro and
Baeza-Yates 1998]. We have not explored these methods, primarily because they im-
prove over exact pattern partitioning (based on q-gram indices) by a small factor, which
is usually within an order of magnitude. However, the length-divided q-gram file is up
to two orders of magnitude slower than the best methods: the FB-trie and the Mor-
Fraenkel method (see Table VII).

It is also noteworthy that the dictionary of modern retrieval systems and spell-
checkers can be very large, partly because they treat some sequences of adjacent space-
separated words as single strings. For example, the spell-checker of the medical search
engine PubMed includes more than 14 million unique sequences (containing from one
to three words). The number of single words alone can also be large. Even though we
use only 3.2 million strings from the subset B of the ClueWeb09 collection, the com-
plete set contains more than 100 million unique strings of which more than 20 million
appear at least 3 times in the collection.

However, the retrieval time of filtering methods, which rely on indexing of small
string fragments, would linearly depend on the number of dictionary strings. Unlike
the fastest sublinear methods (FB-tries and the Mor-Fraenkel method), their perfor-
mance would not scale up well.

Vector space frequency distance methods use conversion of strings into unigram and
q-gram frequency vectors or signatures. Then frequency vectors are indexed using the
trie. Original dictionary queries are substituted with frequency distance queries. Vec-
tor space methods can be seen as variants of pattern partitioning methods.

We have implemented the following vector space methods:

— The unigram frequency vector trie (Section 7.2.3, p. 45);
— The q-gram (q > 1) frequency vector trie (Section 7.2.4, p. 45).
— Signature hashing converts strings to short unigram signatures and searches for

them sequentially (Section 7.2.5, p. 45). Note that signature hashing is not efficient in
the case of small alphabets. Thus, we do not use it for DNA datasets. Unlike unigram
and q-gram frequency vector tries, signature hashing appears to be sensitive to the
choice of the hash function h(c) that is used to reduce dimensionality. Therefore, we
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Fig. 7: Efficiency of on-line searching methods, on Synthetic English data (800,000
entries). The panel on the left represents transposition-unaware implementations, the
panel on the right represents transposition-aware implementations.
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Fig. 8: Efficiency of on-line searching methods, on DNA data (800,000 entries).
Transposition-unaware searching. The panel on the left represents a dictionary where
sequences are 11 character long, the panel on the right represents a dictionary where
sequences are 20 characters long.
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use a frequency optimized hash function, which allows one to achieve significantly
shorter retrieval time (see Appendix B, p. 78).

8.2.3. Comparison Baseline. Retrieval times would be of little value in the absence of
a comparison baseline. To this end, we use a combination of two sequential search
algorithms: magrep1 and magrep2, which are outlined in Section 5, p. 19. To confirm
that the baseline is efficient, we compare our sequential search implementation with
the following sequential search methods:

—NR-grep [Navarro and Raffinot 2000; Navarro 2001b];
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— agrep [Wu and Manber 1992a; 1992b] (used only for transposition-unaware search-
ing);29

—Lazy DFA: the lazy deterministic Levenshtein automaton [Kurtz 1996; Navarro
1997b] (used only for-transposition-unaware searching);30

—Myers-Hyyro: the bit-parallel algorithm to compute the Damerau-Levenshtein dis-
tance, proposed by Myers [1999] and extended by Hyyrö [2005] to handle transposi-
tions;

—DFA-estimated: a trie-based implementation of a deterministic Levenshtein au-
tomaton (used for k ≤ 2; construction time is not accounted for).

The deterministic Levenshtein automaton (DFA-estimated) is implemented as a
complete trie (i.e., it is not compressed), which stores a complete k-neighborhood.
Therefore, it is very efficient during searching. Construction of the automaton requires
considerable time, which is not included in total running time that we report. The ra-
tionale of this method is to estimate a lower bound for a sequential search in the
dictionary.

All methods are implemented in the form of applications that read data from a file.
We read the file several times before testing, in order for the operating system to cache
file contents in the memory. Therefore, the overhead involved in reading the data from
the file is small and is identical for every application.

We use one synthetic English dictionary and two DNA dictionaries that contain se-
quences 11 and 20 characters long. Each dictionary contains 0.8 million strings. In the
case of DNA data, only transposition-unaware modifications are tested, but in the case
of synthetic English data, we also test transposition-aware modifications.
The results of the experimental comparison are presented in Figure 7 (synthetic

English data) and in Figure 8 (DNA data).
Our implementation of sequential searching combines magrep2 for k = 1 and ma-

grep1 for k ≥ 2. Although it is somewhat slower than the best methods, the running
times are competitive.

8.2.4. Associativity Considerations. We report sizes of indices that do not include any as-
sociated data, such as string identifiers (also known as satellite data). Associated data
is domain specific and varies in size. Nonetheless, with exception of the Mor-Fraenkel
method and the k-errata tree, pointers to associated data can be embedded into the
index virtually without affecting search performance and index size. To separate text
strings and pointers one can use a special separator character, e.g., the character with
zero ASCII code.

For Mor-Fraenkel method embedding pointers to associated data may be space inef-
ficient. One to solution to this problem is discussed on p. 33. In our simplified imple-
mentation of the k-errata tree, most search paths follow labels with wildcards, which
may represent more than one string. Consequently, our implementation of the k-errata
tree fully supports only membership queries. As we explain in Section 6.1.3, p. 25, it
is possible to attach a list of string identifiers to each node of the k-errata tree during
the indexing time. However, this approach is less space efficient.

29Because agrep is slow for matching complete strings (option -x), we run two instances of agrep connected
via a pipe. The first instance works as a filter: it finds all strings that contain a substring approximately
matching the pattern. The second instance runs with option -x. It processes the output of the first instance
and reports only complete string matches.
30We use the implementation by G. Navarro modified for complete-string matching.
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8.3. Results

8.3.1. General Observations. Retrieval time statistics are presented in Table VII and
Figures 10-11. Note that the plots include all the available measurements, but the
tables report measurements only for dictionaries containing 0.2, 0.8, and 3.2 million
strings. There are several bird’s-eye view observations:

— The retrieval time of all implemented methods grows exponentially with the max-
imum allowed edit distance k.
— Even though there are many efficient algorithms for k ≤ 2, retrieval time of most

methods for k = 3 is either somewhat better (by about an order of magnitude) or worse
than that of sequential searching.
— When comparing efficiency between synthetic Russian and English datasets, the

methods have very similar retrieval times. Non-neighborhood generation methods
mostly “favor” the Russian dataset, which has a larger alphabet and longer strings,
but the difference is less than two-fold.
— Apart from two synthetic natural language datasets, there are considerable dif-

ferences in retrieval times across datasets. In particular, there are two “difficult” data
sets: ClueWeb09 and DNA-11, where all non-neighborhood methods exhibit longer re-
trieval times. In the case of ClueWeb09, neighborhood generation methods also have
some of the worst search times, because the alphabet is large.

8.3.2. Relationship between Retrieval Time, N , and k. Average retrieval times for all
datasets except DNA-Var are presented in Table VII, p. 56. Figure 9, p. 57, shows
the relationship between retrieval time and index size for indices built over the syn-
thetic English and ClueWeb09 datasets. Because the synthetic Russian dataset yields
results almost identical to those of the synthetic English dataset, we do not plot the
Russian dataset results. Figure 10, p. 58, presents results for DNA data. Each search
method is represented by a polygonal curve, where vertices correspond to dictionaries
of different sizes.
We divide all methods into four groups based on their performance. The first group

includes prefix trees: the string trie, the FB-trie, and the k-errata tree. The second
group includes neighborhood generation methods: full, super-condensed, and reduced
alphabet neighborhood generation, the Mor-Fraenkel method and hybrid neighbor-
hood generation methods.
Depending on the dataset, k, and the amount of available memory, the best retrieval

times in our experimental setup are obtained using a method from either the first or
the second group: the FB-trie, the Mor-Fraenkel method, or a hybrid neighborhood
generation method.
For DNA-20, as well for synthetic Russian and English datasets, the best average

retrieval time is within 3 milliseconds. It can also be seen that for these datasets and
methods of the first and the second group, the retrieval time virtually does not de-
pend on the number of dictionary strings. If k is sufficiently small, these methods have
strictly sublinear retrieval time. For difficult datasets DNA-11 and ClueWeb09, the
best average retrieval time is within 30 milliseconds.
Retrieval time of full neighborhood generation is O

(

nk+1|Σ|k
)

. In the case of DNA
data, the alphabet contains only four characters and full neighborhood generation is
one of the fastest methods even for k = 3. Super-condensed neighborhood generation is
almost always slower than full neighborhood generation, and marginally outperforms
the latter method only for DNA-11 and k = 3. Also note that retrieval time of full
neighborhood generation is nearly constant across dictionaries with different number
of strings.
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In the case of natural language data, the size of the alphabet is large and retrieval
time grows rapidly with k. As a result, full neighborhood generation is the slowest
method for k = 3. It is possible to combine query-time full neighborhood generation
with index-time generation of deletion-only neighborhoods. The resulting methods,
which we call hybrid neighborhood generation methods, outperform the full neighbor-
hood generation by up to two orders of magnitude for k = 1 and k = 2. Unfortunately, it
is not a space-efficient solution and it does not worked very well for k = 3. A better so-
lution is reduced alphabet generation, which works well even for k = 3. It outperforms
the string trie in most cases.

It is also noteworthy that the regular string trie is not especially efficient for the dif-
ficult dataset ClueWeb09. We suppose that this happens because ClueWeb09 is prefix-
dense, i.e., it contains a lot of short strings. Consequently, the search algorithm cannot
backtrack early and visits more trie nodes in the case of prefix-dense datasets. For the
string trie built over the largest ClueWeb09 dictionary, the average number of children
for the first four levels are 36, 36, 34.7, and 10.2. In comparison, in the case of the trie
built over the largest synthetic English dictionary, the average number of children for
the first three levels are 26, 18.5, 9.2, and 4.7.

To verify whether short strings affect performance of the string trie, we measured
retrieval time for a dictionary that did not contain strings shorter than 5 characters.
Even though the number of such strings is less than 9 percent of the total number of
ClueWeb09 strings, their exclusion leads to a 1.6-fold improvement in retrieval time
for k = 3. Removal of strings that are shorter than 6 characters, which represent only
one fifth of all dictionary strings, leads to a 2-fold improvement for k = 3.

Retrieval time of the k-errata tree is similar to that of the FB-trie: the k-errata tree
is faster than the FB-trie for the ClueWeb09 dataset, but about 2-3 times slower for
other datasets. The method is reasonably fast for k = 1, but has a huge index: it is also
the only method that could not be tested for k > 1 due to memory restrictions.

DNA-11 is also a difficult dataset, which has dense dictionaries. In the case of a
dense dictionary it is hard to outperform full neighborhood generation, because such
dictionary contains a significant fraction of strings from pattern neighborhoods. In
the case of DNA-11 and k ≤ 2, the only methods outperforming full neighborhood
generation are Mor-Fraenkel method and hybrid neighborhood generation methods.
However, both neighborhood generation methods are inefficient for k = 3.

In addition, the gap in performance between full neighborhood generation and the
other methods rapidly decreases as N increases. For the smallest dictionary and k = 1,
hybrid neighborhood generation-1 is almost three times faster than full neighborhood
generation. Yet, for N = 1.6 × 106, where the DNA-11 dictionary contains 38 per-
cent of all 11-character DNA-sequences, the difference between hybrid neighborhood
generation-1 and full neighborhood generation is only 1.5-fold. An analytical justifi-
cation of this observation is given in Section C.3.5, p. 84. For k = 3, FB-trie can be
up to 16 times faster, but also only for small N . For N = 3.2 × 106, FB-trie and full
neighborhood generation have equivalent performance.

The methods in the third group include a unigram frequency vector trie, signature
hashing, and the length-divided q-gram file. They are 10 to 100 times slower than the
methods in the first group, but are still 10 to 100 times faster than sequential searching
for k ≤ 2. Retrieval time of these methods linearly depends on N and increases faster
than that of methods from the first group. For k = 3 and N = 3.2 × 106, only unigram
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Table VII: In-memory search time (ms)

English synthetic

k = 1 k = 2 k = 3

Number of dictionary strings 0.2M 0.8M 3.2M 0.2M 0.8M 3.2M 0.2M 0.8M 3.2M

BKT 1.230 2.913 6.278 11.79 58.16 159.4 58.12 243.3 820.0

FB-trie 0.033 0.045 0.060 0.386 0.499 0.637 1.405 2.019 2.632

Full neighborhood generation 0.108 0.136 0.158 31.38 36.95 43.12 7574 7131 9711

Hybrid neighborhood generation-1 0.007 0.009 1.896 2.314 611.4 546.5

Hybrid neighborhood generation-2 0.007 0.053 19.41

k-errata tree 0.033 0.047

Length-divided inverted q-gram file 0.172 0.323 0.855 1.879 6.277 19.02 17.83 86.05 311.1

Mor-Fraenkel method 0.007 0.053

q-gram frequency vector trie 8.164 15.93 29.34 62.85 207.3 676.7 186.4 679.8 2142

Reduced alphabet neighborhood generation 0.030 0.046 0.073 0.806 1.111 1.787 19.24 23.86 46.41

Sequential search 11.74 41.26 155.2 34.31 132.2 466.1 85.60 358.7 1350

Signature hashing 0.830 1.287 2.193 3.803 12.96 54.96 25.14 139.0 589.8

String trie 0.256 0.313 0.377 2.417 3.401 4.236 13.30 22.47 32.48

Unigram frequency vector trie 0.248 0.438 0.749 1.809 4.162 9.640 9.756 37.81 132.1

Russian synthetic

BKT 0.812 2.386 5.107 9.320 45.66 124.0 50.49 203.4 626.8

FB-trie 0.029 0.041 0.082 0.286 0.381 0.709 0.874 1.312 2.059

Full neighborhood generation 0.147 0.174 0.201 57.70 66.51 75.14 19987 17704 21130

Hybrid neighborhood generation-1 0.007 0.008 2.741 2.991 1547 1408

Hybrid neighborhood generation-2 0.007 0.046 26.47

k-errata tree 0.033 0.046

Length-divided inverted q-gram file 0.105 0.309 0.945 0.912 3.510 11.57 9.312 46.31 185.3

Mor-Fraenkel method 0.007 0.046

q-gram frequency vector trie 7.957 16.94 31.17 61.39 177.7 543.8 196.4 654.3 2050

Reduced alphabet neighborhood generation 0.027 0.043 0.068 0.778 1.137 1.759 21.04 28.71 41.84

Sequential search 5.970 35.54 139.9 19.67 97.12 352.0 70.88 281.9 1064

Signature hashing 0.761 1.155 2.068 3.172 11.75 55.90 30.52 122.6 477.4

String trie 0.232 0.274 0.469 2.013 2.820 3.701 11.63 19.49 28.64

Unigram frequency vector trie 0.359 0.488 0.561 2.086 3.645 7.313 8.668 31.44 80.72

ClueWeb09

BKT 1.667 6.344 13.39 14.81 76.53 248.8 54.53 216.2 718.7

FB-trie 0.058 0.087 0.180 1.366 2.420 5.763 9.200 16.48 33.17

Full neighborhood generation 0.131 0.207 0.321 29.31 42.03 56.93 9587 14300 17117

Hybrid neighborhood generation-1 0.013 0.018 4.926 7.326 3211 13775

Hybrid neighborhood generation-2 0.013 0.629 1874

k-errata tree 0.026 0.065

Length-divided inverted q-gram file 0.324 0.696 1.332 5.255 22.39 63.81 49.93 194.5 569.7

Mor-Fraenkel method 0.013 0.629

q-gram frequency vector trie 7.604 16.08 43.75 69.41 239.2 693.6 150.6 519.2 1728

Reduced alphabet neighborhood generation 0.031 0.052 0.072 1.040 1.839 2.436 44.77 95.50 133.5

Sequential search 15.03 57.47 183.9 42.74 159.8 606.7 83.38 328.4 1233

Signature hashing 0.778 1.395 4.352 4.354 13.73 70.68 25.30 116.4 426.0

String trie 0.666 1.227 1.979 8.435 18.89 49.37 31.80 107.3 333.3

Unigram frequency vector trie 0.280 0.545 1.542 2.532 8.490 25.33 13.18 54.33 141.0

DNA-11

BKT 1.829 4.492 11.85 14.34 45.47 153.5 36.36 127.3 467.4

FB-trie 0.049 0.088 0.226 0.716 1.535 4.504 2.690 8.062 31.22

Full neighborhood generation 0.022 0.027 0.033 0.912 1.085 1.259 31.26 36.84 40.78

Hybrid neighborhood generation-1 0.008 0.013 0.695 6.275 451.9 12646

Hybrid neighborhood generation-2 0.008 0.091 133.6

k-errata tree 0.055 0.080

Length-divided inverted q-gram file 1.191 5.068 27.54 11.33 66.41 254.2 61.41 368.7 1430

Mor-Fraenkel method 0.008 0.091

q-gram frequency vector trie 1.551 4.579 16.78 15.43 55.19 205.4 66.02 246.2 942.0

Reduced alphabet neighborhood generation 0.031 0.058 0.092 0.724 1.466 2.275 16.36 30.39 75.77

Sequential search 26.54 106.8 415.4 46.91 187.8 741.2 80.35 323.6 1259

String trie 0.212 0.217 0.442 2.606 3.201 7.570 16.25 32.03 67.87

Super-condensed neighborhood generation 0.082 0.092 0.125 1.475 1.706 2.832 17.47 21.61 52.15

Unigram frequency vector trie 1.652 6.873 29.88 7.690 31.88 138.2 31.54 133.6 545.0

DNA-20

BKT 1.479 3.460 8.024 8.494 27.18 82.36 44.17 153.2 529.0

FB-trie 0.016 0.019 0.037 0.175 0.271 0.653 0.341 0.528 1.364

Full neighborhood generation 0.040 0.046 0.050 3.046 3.465 3.714 205.8 205.9 229.0

Hybrid neighborhood generation-1 0.010 0.011 1.047 1.178 87.32 98.25

k-errata tree 0.057

Length-divided inverted q-gram file 1.354 7.493 39.46 3.221 19.47 85.69 9.737 50.31 210.4

q-gram frequency vector trie 1.708 3.314 6.606 11.17 25.96 62.10 40.67 107.8 306.0

Reduced alphabet neighborhood generation 0.040 0.044 0.054 2.083 2.277 2.453 113.5 125.3 134.9

Sequential search 46.55 186.3 740.6 77.29 310.1 1238 108.0 431.7 1725

String trie 0.234 0.228 0.452 2.901 3.344 7.519 18.22 34.81 63.53

Super-condensed neighborhood generation 0.225 11.24 416.7

Unigram frequency vector trie 0.935 3.518 13.30 2.387 9.712 36.21 8.230 30.80 122.5

Note: M stands for million entries.
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Fig. 9: The relationship between retrieval time and index size (natural language data).
The first row represents the synthetic English dataset, the second row represents the
ClueWeb09 dataset.
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Fig. 10: The relationship between retrieval time and index size (DNA data). The first
row represents DNA-11, the second row represents DNA-20.
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Notes: Logarithmic scale on both axes. Each search method is represented by a polyg-
onal curve with vertices that correspond to dictionaries of sizes 0.2, 0.4, 0.8, 1.6, and
3.2 million strings. Most methods are represented by five test dictionaries. Hybrid
neighborhood generation-1, Mor-Fraenkel method, hybrid neighborhood generation-
2, super-condensed neighborhood generation, and the k-errata tree are tested using
fewer dictionaries due to memory restrictions.

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article A, Publication date: 00.



Indexing Methods for Approximate Dictionary Searching: Comparative Analysis A:59

frequency vector trie can be an order of magnitude faster than sequential searching.
Note that neither the unigram frequency vector trie nor the length-divided q-gram file
are efficient for DNA-11. In this case, both methods are either marginally better or
worse than the BKT.

The fourth group includes the BKT and q-gram frequency vector tries. In the case
of natural language data, these methods are slow. The q-gram frequency vector trie is
slower than sequential searching for k = 2, 3 and N = 3.2 × 106. The average retrieval
time of the BKT is always better than that of sequential searching, but a significant
speedup is achieved only for k = 1 and synthetic datasets (Russian and English). For
the real-world ClueWeb09 dataset, the maximum improvement over sequential search-
ing (achieved only for k = 1) is 14-fold.

In the case of DNA data, both methods have better retrieval times, which are typ-
ically 2-3 times shorter than those for natural language datasets. Yet, these methods
are much slower than the string trie and the FB-trie. For k ≤ 2 and DNA data, they
are also significantly slower than neighborhood generation methods.

It is noteworthy, that the BKT is a strictly sublinear method: given that b = 20,
the BKT is O

(

N0.69
)

time for k = 1 and O
(

N0.87
)

time for k = 2 [Baeza-Yates and
Navarro 1998]. In practice, however, the BKT is one of the slowest methods with very
low filtering efficiency (see Table VIII, p. 62).

Both the multi-pivot modification of the BKT and the hybrid of the BKT and the
AESA are slower than the BKT for all bucket sizes b used in our experiments. There-
fore, we do not present performance measures of these methods.

The retrieval time of all implemented methods grows exponentially with k and most
methods quickly degrade to sequential searching. According to data in Table VII, the
growth rate of retrieval time for most methods that are not variants of neighborhood
generation can be roughly approximated by 10k. For DNA-20, the retrieval time of the
unigram frequency vector trie and the length-divided inverted q-gram grows approxi-
mately as 3k. Note that in the case of the string trie, the real growth rate is much lower
than that implied by the theoretical upper bound of O

(

nk+1|Σ|k
)

.

FB-trie has one of the slowest growth rates for all datasets, while full neighborhood
generation has the fastest growth rate even for DNA data. Retrieval time of reduced
alphabet generation exhibits a slower growth with k. In the case of natural languages
and sparse dictionaries, reduced alphabet generation is faster than full neighborhood
generation by a factor approximately equal to (|Σ|/|σ|)k.

8.3.3. Relationship between Retrieval Time and String Length. To study the relationship be-
tween the retrieval time and the string length, we carry out experiments with DNA-
Var dictionaries and the 0.2-million-string dictionary from ClueWeb09. Despite the
differences in test scenarios and in alphabet sizes between the two data sets, there are
similar patterns in both cases (see Figure 11, p. 60).

First of all, it can be seen that the retrieval time of full and super-condensed neigh-
borhood generation is increasing as the string length increases, because the retrieval
time of both methods is dominated by the time required to generate a neighborhood
and search its elements. Note that, if k is small in relation to the string length, the
super-condensed neighborhood is not significantly smaller than the respective full
neighborhood (see Table II, p. 28).

The filtering efficiency of Mor-Fraenkel method and hybrid neighborhood gen-
eration depends on the number of strings from intersections among the pattern
l-deletion neighborhoods (l ≤ k) and l-deletion neighborhoods of dictionary strings (see
Appendix C.3.2 and Appendix C.3.3 for analytical justification). Because both a sub-
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Fig. 11: The relationship between retrieval time and string length: the first row rep-
resents synthetic English data, the second row represents ClueWeb09 data, the third
row represents DNA data
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set of ClueWeb09 strings shorter than 5 characters and a set of short DNA sequences
are dense, the number of such strings is larger. Therefore, these methods usually have
longer retrieval time for small pattern sizes.

As the pattern length increases, the filtering efficiency increases as well. On the
other hand, the size of the l-deletion neighborhood rapidly grows. As a result of these
counter-balancing trends, retrieval time decreases to a certain point, where it achieves
a minimum. Beyond this point, retrieval time is dominated by the size of the l-deletion
neighborhood, which grows with the string length. Similar counter-balancing effects
are observed in the case of reduced-alphabet neighborhood generation and natural
language data. Note that this trend is more visible for k > 1.

The retrieval time of all sequence-based filtering methods generally decreases as
the string length increases. We suppose that retrieval time is dominated by the cost
of the checking step, which depends on the filtering efficiency. For a constant k, the
filtering efficiency is better for longer strings, because a search algorithm uses longer
subsequences to filter out non-matching strings.

The retrieval time of the string trie virtually does not depend on the lengths of pat-
terns and dictionary strings. Note that if we search for patterns p and pv in the same
dictionary, every node visited during the search for p is also visited during the search
for pv. In the case of ClueWeb09 and synthetic English data, this does not result in sig-
nificantly worse retrieval time for long patterns. Yet, in the case of the FB-trie retrieval
time is better if patterns and/or dictionary strings are longer.

To better understand this phenomenon, we have carried out experiments that in-
clude very short patterns (containing 2-3 characters). In addition to retrieval time, we
have also measured the average number of nodes (including internal ones) visited at
search time. As the pattern length increases from 2 to 15, the number of nodes visited
in the string trie increases moderately, whereas the number of nodes visited in the
FB-trie decreases sharply (by more than an order of magnitude).

Therefore, we conjecture that the retrieval time of the string trie is dominated by
traversing nodes close to the root, where the average number of children is large. An
increase in the pattern length does not lead to a significant increase in the number of
visited nodes, because the number of child nodes quickly decreases as the node level in-
creases. Searching in the FB-trie involves a step that filters out non-matching strings
using a half of the pattern and the maximal allowed distance equal to ⌊k/2⌋. The effi-
ciency of this step increases with the pattern length.

The case of DNA-Var data is similar to that of the natural language data. The first
10 levels of tries built for 10 different dictionaries are almost identical (the majority of
nodes have exactly four children), and the retrieval time of the string trie is apparently
dominated by traversal of nodes at the first 10 levels. The retrieval time of the FB-trie
and the number of visited nodes are significantly lower for longer patterns and strings,
because the filtering step works better with longer patterns.

8.3.4. Filtering efficiency. Experimental measurements of the filtering efficiency are
presented in Table VIII. We divide all filtering methods into two groups: neighborhood
generation filtering methods and the other filtering methods.

The first group includes: reduced alphabet generation, hybrid neighborhood genera-
tion methods, andMor-Fraenkel method. The retrieval time of these methods is sublin-
ear for one or more datasets. A disadvantage of all filtering neighborhood-generation
methods is that the same string can be verified several times during the checking step.
As a result, filtering efficiency can have negative values. Negative filtering efficiency is
observed for hybrid neighborhood generation methods, k = 3, and all datasets except
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Table VIII: Filtering efficiency

English synthetic

k = 1 k = 2 k = 3

Number of dictionary strings 0.2M 0.8M 3.2M 0.2M 0.8M 3.2M 0.2M 0.8M 3.2M

BKT 0.9278 0.9507 0.9708 0.6892 0.7183 0.7846 0.446 0.457 0.543

Hybrid neighborhood generation-1 0.9999 0.9999 0.9596 0.9896 -14.8 -2.44

Hybrid neighborhood generation-2 0.9999 0.9996 0.730

Length-divided inverted q-gram file 0.9994 0.9996 0.9997 0.9866 0.9891 0.9918 0.890 0.901 0.919

Mor-Fraenkel method 0.9999 0.9996

q-gram frequency vector trie 0.9613 0.9647 0.9675 0.5286 0.5153 0.5210 0.115 0.090 0.090

Reduced alphabet neighborhood
generation

0.9983 0.9989 0.9993 0.9748 0.9821 0.9881 0.691 0.742 0.820

Signature hashing 0.9907 0.9902 0.9891 0.9163 0.9099 0.9002 0.676 0.659 0.635

Unigram frequency vector trie 0.9985 0.9987 0.9988 0.9865 0.9868 0.9877 0.934 0.931 0.938

Russian synthetic

BKT 0.9360 0.9567 0.9754 0.7168 0.7411 0.8165 0.484 0.497 0.598

Hybrid neighborhood generation-1 0.9999 0.9999 0.9422 0.9855 -31.2 -5.62

Hybrid neighborhood generation-2 0.9999 0.9996 0.555

Length-divided inverted q-gram file 0.9997 0.9997 0.9998 0.9941 0.9941 0.9952 0.943 0.943 0.951

Mor-Fraenkel method 0.9999 0.9996

q-gram frequency vector trie 0.9771 0.9757 0.9791 0.6091 0.6037 0.6109 0.157 0.153 0.154

Reduced alphabet neighborhood
generation

0.9993 0.9993 0.9995 0.9885 0.9893 0.9915 0.848 0.855 0.884

Signature hashing 0.9902 0.9902 0.9896 0.9076 0.9052 0.9010 0.659 0.654 0.637

Unigram frequency vector trie 0.9992 0.9993 0.9993 0.9917 0.9918 0.9923 0.958 0.955 0.960

ClueWeb09

BKT 0.8876 0.9230 0.9555 0.6511 0.6834 0.7419 0.435 0.443 0.543

Hybrid neighborhood generation-1 0.9999 0.9999 0.9608 0.9894 -14.1 -3.26

Hybrid neighborhood generation-2 0.9999 0.9988 -1.75

Length-divided inverted q-gram file 0.9976 0.9988 0.9995 0.9595 0.9704 0.9803 0.768 0.791 0.851

Mor-Fraenkel method 0.9999 0.9988

q-gram frequency vector trie 0.8902 0.9103 0.9334 0.3746 0.4214 0.4622 0.070 0.096 0.142

Reduced alphabet neighborhood
generation

0.9977 0.9988 0.9994 0.9774 0.9866 0.9923 0.749 0.826 0.913

Signature hashing 0.9837 0.9877 0.9874 0.9170 0.9232 0.9257 0.701 0.712 0.726

Unigram frequency vector trie 0.9954 0.9969 0.9979 0.9685 0.9755 0.9809 0.872 0.887 0.922

DNA-11

BKT 0.9483 0.9706 0.9804 0.6785 0.7559 0.7922 0.347 0.435 0.481

Hybrid neighborhood generation-1 0.9998 0.9999 0.9890 0.9948 0.465 0.803

Hybrid neighborhood generation-2 0.9998 0.9941 0.633

Length-divided inverted q-gram file 0.9963 0.9965 0.9971 0.8990 0.9011 0.9080 0.549 0.546 0.569

Mor-Fraenkel method 0.9998 0.9941

q-gram frequency vector trie 0.9739 0.9744 0.9722 0.7484 0.7336 0.7270 0.328 0.318 0.302

Reduced alphabet neighborhood
generation

0.9980 0.9987 0.9994 0.9731 0.9779 0.9912 0.657 0.735 0.870

Super-condensed neighborhood
generation

0.9999 0.9999 0.9999 0.9990 0.9991 0.9991 0.985 0.985 0.989

Unigram frequency vector trie 0.9556 0.9532 0.9447 0.8491 0.8397 0.8156 0.671 0.651 0.628

DNA-20

BKT 0.9740 0.9853 0.9917 0.8180 0.8576 0.8922 0.533 0.596 0.651

Hybrid neighborhood generation-1 0.9998 0.9999 0.9790 0.9948 -0.96 0.508

Length-divided inverted q-gram file 0.9978 0.9980 0.9978 0.9949 0.9950 0.9948 0.960 0.958 0.958

q-gram frequency vector trie 0.9963 0.9962 0.9963 0.9413 0.9377 0.9404 0.735 0.733 0.740

Reduced alphabet neighborhood
generation

0.9999 0.9999 0.9999 0.9988 0.9996 0.9995 0.994 0.995 0.995

Super-condensed neighborhood
generation

0.9999 0.9999 0.999

Unigram frequency vector trie 0.9859 0.9854 0.9859 0.9477 0.9446 0.9477 0.858 0.869 0.868

Notes: Filtering efficiency is calculated as 1−Ncheck/N , where Ncheck is
a number of verifications performed during the checking step. M stands
for million entries.

DNA-11. Negative efficiency indicates that filtering is not working properly and that
the search algorithm is not better than sequential searching.

The second group comprises: the length-divided inverted q-gram file, signature hash-
ing, the unigram frequency vector trie, the q-gram frequency vector trie, and the BKT.
During the checking step, none of these methods verifies the same string more than
once. Their retrieval times are roughly proportional to N .
According to experimental data, filtering efficiency correlates with retrieval time.

The most efficient filtering methods are reduced alphabet neighborhood generation,
the Mor-Fraenkel method (for k ≤ 2), hybrid neighborhood generation methods (for
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k ≤ 2), the unigram frequency vector trie, and the length-divided q-gram file. They
also have the highest filtering efficiency. The two slowest filtering methods – the BKT
and the q-gram frequency vector trie – have low filtering efficiency.

It should be noted that filtering efficiency alone does not define retrieval perfor-
mance. Efficiency of the method depends on many factors, which include verification
cost and utilization of processor caches. For example, in the case of the synthetic Rus-
sian dataset and k ≤ 2, length-divided inverted q-gram file has better filtering effi-
ciency than the unigram frequency vector trie. Yet, for N = 3.2×106, the length-divided
inverted q-gram file is outperformed by the unigram frequency vector trie.
The checking step of both methods involves verifying whether the Levenshtein dis-

tance between a candidate string and the search pattern does not exceed k. Nonethe-
less, the unigram frequency vector trie combines strings into buckets, which allows for
more efficient verification. An opposite case is observed for DNA-20 and k = 3. The
unigram frequency vector has slightly shorter retrieval time than reduced alphabet
generation, even though the latter has better filtering efficiency and uses a cheaper
verification algorithm, which is essentially based on the Hamming distance.

8.3.5. Index Size. Index size statistics are presented in Table IX. All methods are di-
vided into three groups: methods with sublinear, linear, and superlinear index over-
head (the arithmetic difference between the total size of the index and the size of the
original dictionary). Note that Table IX reports the full index size as opposed to the
index overhead.

The first group includes the BKT, the unigram frequency vector trie, and the q-gram
frequency vector trie. These methods have very small indices: for N = 3.2 × 106, the
size of the auxiliary data structure (excluding the strings themselves) is in the range
from less than one percent to 43 percent of the dictionary size. By varying parameters
of these methods, e.g., by decreasing the size of a frequency vector, it is possible to
make the index overhead very small with respect to the dictionary size. Except for the
unigram frequency vector trie, these methods are not very efficient.
In the case of natural language data and short DNA sequences, reduced alphabet

generation has also a sublinear index overhead. This is a more efficient method than
the BKT, the unigram and q-gram frequency vector trie, but its index overhead is also
higher. One of the reasons is that reduced alphabet neighborhood generation employs
a hash table with a load factor roughly equal to 0.5. A more compact representation
is achievable if collisions are resolved with chaining. In the case of static dictionaries,
further space savings are possible (see Section 4.1, p. 16).

The second group of methods includes full neighborhood generation, the string trie,
the FB-trie, and the length-divided q-gram file. The overhead of full neighborhood gen-
eration is βN bytes. In our implementation β ≈ 10. Our implementation of super-
condensed neighborhood generation is suboptimal in terms of space: it creates an in-
verted file of all substrings obtained from dictionary strings by deleting i1 characters
on the left and i2 characters on the right (for all i1 + i2 ≤ 2k). A more space-economical
representation is possible with the help of (compressed) suffix trees or arrays.

The path-compressed string trie has 20-90 percent overhead. The FB-trie index con-
sists of two string tries: one built over regular strings and the other built over reversed
strings. It uses about twice the space of the regular trie. The FB-trie is the fastest
method among those with linear and sublinear indices.

Static dictionaries can be represented as a succinct trie that uses space close to the
information theoretic lower bound [Benoit et al. 2005]. In most cases, the resulting
data structure uses less space than the original dictionary: i.e., its index overhead is
negative. If it is not necessary to retrieve associated data, such as string identifiers,
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the string trie can be represented by a direct acyclic word graph, which in many cases
also has a negative index overhead [Mihov and Schulz 2004].
The overhead of inverted q-gram file is O(αcomp · λNP ), where the compression ratio

αcomp depends on the type of q-gram and its size q. The best compression is achieved
for q = 2. By increasing q from 2 to a dataset-dependent optimal value (see Table VI, p.
48), we only slightly increase the size of the index, but significantly decrease retrieval
time. By further increasing q, the index size continues to grow, while retrieval time
improves only marginally.
The compression ratio αcomp varies across datasets: it is less than 0.5 for DNA data

and is approximately equal to 0.6 for synthetic natural language data. For ClueWeb09,
the best compression ratio is 0.84. Note that the data in Table IX includes the space
used by the set of short strings that are searched for sequentially. This additional
overhead is small (less than 2 percent of the dictionary size) for all datasets except
ClueWeb09, for which it is equal to 23 percent of the dictionary size.
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Table IX: Index Size

English synthetic Russian synthetic ClueWeb09 DNA-11 DNA-20

Number of dictionary strings 0.2M 0.8M 3.2M 0.2M 0.8M 3.2M 0.2M 0.8M 3.2M 0.2M 0.8M 3.2M 0.2M 0.8M 3.2M

BKT
2MB 8MB 35MB 2MB 9MB 38MB 2MB 7MB 29MB 2MB 10MB 39MB 4MB 17MB 67MB

104% 104% 104% 103% 103% 103% 104% 104% 104% 107% 107% 107% 104% 104% 104%

FB-trie
6MB 25MB 95MB 7MB 26MB 101MB 6MB 22MB 90MB 7MB 26MB 84MB 10MB 40MB 155MB

330% 307% 282% 316% 298% 278% 373% 347% 324% 307% 279% 230% 262% 252% 242%

Full neighborhood generation
5MB 20MB 82MB 5MB 21MB 84MB 4MB 18MB 76MB 5MB 21MB 85MB 7MB 28MB 112MB

253% 248% 243% 237% 235% 232% 300% 286% 272% 231% 231% 231% 175% 175% 175%

Hybrid neighborhood generation-1
48MB 193MB 54MB 217MB 26MB 159MB 26MB 63MB 117MB 468MB

2448% 2379% 2483% 2447% 1746% 2472% 1156% 687% 2928% 2923%

Hybrid neighborhood generation-2
281MB 440MB 142MB 99MB

14288% 20070% 9485% 4318%

k-errata tree
151MB 629MB 169MB 692MB 107MB 469MB 164MB 550MB 289MB

7696% 7752% 7682% 7809% 7161% 7277% 7176% 6010% 7211%

Length-divided inverted q-gram file
11MB 32MB 120MB 14MB 39MB 136MB 9MB 33MB 129MB 6MB 25MB 98MB 12MB 46MB 183MB

563% 400% 356% 627% 445% 375% 616% 519% 462% 269% 268% 268% 288% 286% 286%

Mor-Fraenkel method
281MB 440MB 142MB 99MB

14288% 20070% 9485% 4318%

q-gram frequency vector trie
4MB 15MB 48MB 5MB 17MB 56MB 3MB 11MB 40MB 3MB 9MB 37MB 6MB 19MB 69MB

228% 180% 143% 236% 192% 154% 204% 167% 145% 112% 103% 101% 140% 119% 107%

Reduced alphabet neighborhood generation
5MB 14MB 46MB 5MB 16MB 58MB 4MB 17MB 70MB 4MB 11MB 39MB 12MB 46MB 178MB

238% 174% 136% 242% 181% 160% 280% 264% 251% 162% 124% 107% 290% 286% 278%

Signature hashing
3MB 10MB 37MB 4MB 11MB 40MB 3MB 8MB 31MB

165% 121% 111% 160% 120% 111% 182% 124% 112%

String trie
3MB 13MB 49MB 4MB 14MB 52MB 3MB 11MB 45MB 4MB 13MB 42MB 5MB 20MB 77MB

169% 157% 145% 165% 154% 143% 188% 175% 163% 153% 139% 115% 131% 126% 121%

Super-condensed neighborhood generation
184MB 573MB 641MB

8055% 6257% 16014%

Unigram frequency vector trie
3MB 11MB 38MB 4MB 13MB 45MB 2MB 9MB 35MB 2MB 9MB 37MB 4MB 16MB 64MB

168% 133% 114% 189% 149% 124% 160% 136% 124% 100% 100% 100% 101% 100% 100%

Notes: Percentage represents the ratio of the index size to the lexicon size.
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Table X: Ratio of retrieval time for transposition-aware modification to retrieval time
for transposition-unaware modification.

English synthetic Russian synthetic ClueWeb09

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

BKT 1.28 1.73 2.90 1.17 1.48 2.58 1.40 1.92 2.10

FB-trie 1.09 1.19 1.35 1.08 1.20 1.10 1.10 1.16 1.33

Full neighborhood generation 1.01 1.03 1.04 1.01 1.02 0.95 1 1.02 1.03

Hybrid neighborhood generation-1 1 1.01 1.04 1 1.02 1 1.02 1.29 1.04

Hybrid neighborhood generation-2 1.01 1.02 1.02 1 1 1.01 1.01 1.05 1.03

k-errata tree 1 0.98 0.99

Length-divided inverted q-gram file 1.14 1.21 1.33 1.14 1.22 1.36 1.21 1.21 1.28

Mor-Fraenkel method 1 1 1 1 1.01 1.05

q-gram frequency vector trie 4.42 7.06 3.61 4 5.52 4.79 4.56 4.99 2.96

Reduced alphabet neighborhood generation 1.13 1.23 1.56 1.12 1.23 1.34 1.08 1.13 1.28

Sequential search 1.25 2.27 3.37 1.22 1.95 3.23 1.77 2.85 2.58

Signature hashing 1.18 1.92 2.95 1.02 1.50 2.54 2.64 2.38 2.50

String trie 1.19 1.15 1.14 1.74 1.21 1.10 1.15 1.15 1.13

Unigram frequency vector trie 1.52 1.58 3.23 0.87 1.29 2.68 1.39 2 1.89

The third group represents superlinear methods and includes the Mor-Fraenkel
method, hybrid neighborhood generation methods, and the k-errata tree. The Mor-
Fraenkel method relies on indexing of l-deletion dictionaries (l ≤ k). Whenever the
index fits into the main memory, the Mor-Fraenkel method outperforms all other meth-
ods. However, this is possible only for small dictionaries and k ≤ 2. In our implementa-
tion, the index is more than 40 times larger than the size of the dictionary in the case
of DNA data and is more than 140 times larger in the case of natural language data.
A transducer-based variant of Mor-Fraenkel method has a smaller index for k = 1, but
it has not been verified whether the transducer-based index is smaller for k > 1.
One approach to reduce index size consists in combining Mor-Fraenkel method with

full neighborhood generation. However, this method has not worked well for k = 3.
Some of the best retrieval times are also achieved by the k-errata tree. Yet, its index

is so large that the method cannot be tested for k > 1.

8.3.6. Cost of Including Transpositions as Basic Edit Operations. From Table X it follows that
counting the transposition as a single edit operation does have a significant cost for
many methods.
The most “transposition-sensitive” method is the q-gram frequency vector trie: the

difference in retrieval time between a transposition-aware and a transposition-un-
aware modification is 3-7 fold. The search algorithm of this method is based on In-
equality 11, p. 13, which is not very efficient in the case of transposition-aware search-
ing.

The least transposition-sensitive methods are the Mor-Fraenkel method, hybrid
neighborhood generation methods, the k-errata tree, and full neighborhood genera-
tion. The transposition-aware versions of reduced alphabet neighborhood generation,
the length-divided inverted q-gram file, the string trie, and the FB-trie are 1.1-1.7
times slower than respective transposition-unaware modifications.

9. CONCLUSIONS

In this paper we survey state of the art indexing methods for approximate dictionary
searching, which we classify into direct methods and sequence-based filtering methods.
The taxonomy is explained in Section 3 and outlined in Figure 2, p. 14. We present
experimental results for maximum allowed edit distance k = 1, 2, 3 and several data
sets that include natural language dictionaries and dictionaries of DNA sequences (see
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Section 8.1.2, p. 46). The summary of implemented methods is given in Table V, p. 48;
parameters of implemented methods are listed in Table VI, p. 48.

Because of theoretical advances and technological breakthroughs in computer hard-
ware, approximate dictionary queries can be answered very quickly. For all datasets
except DNA-11 and ClueWeb09, a query can be answered within 2 milliseconds (on
average). Implemented methods are up to four orders of magnitude faster than se-
quential searching. However, retrieval time grows exponentially with the maximum
allowed edit distance: as k increases, all the methods degrade to sequential searching.

Another important lesson that we have learned from our experiments is that some
datasets are less amenable to efficient indexing than others. In particular, ClueWeb09
contains many short words and is prefix-dense (ClueWeb09 includes almost all possible
three-letter words). As a result, the retrieval time of both string tries and FB-tries for
ClueWeb09 is an order of magnitude longer than for natural language dictionaries and
DNA-20. Another difficult dataset is DNA-11, where some dictionaries are dense, i.e.
contain almost all existing strings of a given length. Therefore, in the case of DNA-11,
it is not possible to significantly outperform full neighborhood generation. Obviously,
DNA-11 is also a prefix-dense dataset, which inhibits performance of prefix trees such
as string tries and FB-tries.

In our opinion, there are two most important types of search methods: neighbor-
hood generation and string tries. These are conceptually similar methods (see Section
6.2.2, p. 27), which also have comparable retrieval time. For DNA-11, full neighbor-
hood generation has some of the best retrieval times and outperforms string tries for
k ≤ 2. In the case of natural language data, full neighborhood generation is not espe-
cially efficient. Yet, its modification – reduced alphabet generation – has a performance
equivalent to that of tries.

There are two methods that are superlinear in terms of index size: the Mor-Fraenkel
method and the k-errata tree. the Mor-Fraenkel method outperforms the string trie,
full neighborhood generation, and reduced alphabet generation for all dictionaries,
where it is possible to fit the index of Mor-Fraenkel method into the memory. The re-
trieval time of the k-errata tree is comparable with the retrieval time of the FB-trie.
However, the index of the k-errata tree is the largest among implemented methods:
we believe that the current version of the method is impractical for k > 1. The Mor-
Fraenkel method is more space efficient, but its application is also limited to small
dictionaries and small k. On the other hand, a hybrid method, FB-trie, which blends
tries with pattern partitioning, achieves excellent retrieval performance using linear
space. Evidently, better compromise solutions are yet to be discovered. We conjecture
that these solutions would combine neighborhood generation, tries, and pattern parti-
tioning.

Sequence-based filtering methods are not very fast. The unigram frequency vector
trie is a reasonably efficient method with a very small index overhead, which is up to
two orders of magnitude faster than sequential searching. Yet, it is significantly slower
than the FB-trie or the Mor-Fraenkel method. A very similar method, the q-gram fre-
quency vector trie, is almost always slower than the unigram frequency vector. It is
especially inefficient for natural language data. For k > 1, the length-divided inverted
q-gram file, which employs partitioning into exact searching, is also slower than the
unigram frequency trie in most cases. In addition, it has much larger index overhead.

In comparison to other methods, metric space methods also appear to be slow, which
confirms earlier conclusions [Baeza-Yates and Navarro 1998]. Our implementation of
the BKT is about 3-15 times faster than sequential searching for k = 2 and is only
about 2-3 times faster than sequential searching for k = 3. We have also implemented
the multi-pivot modification of the BKT as well as a hybrid of the BKT and the AESA.
Neither method was more efficient than the BKT. Fredriksson [2007] reports that al-
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most a ten-fold improvement can be achieved in BKT retrieval times by applying a
bit-parallel algorithm that computes several distances simultaneously. Yet, we believe
that this improvement is mainly due to using SIMD extensions (Single Instruction
Multiple Data), which are available on Intel and AMD64 processors (see a discussion
in Section 6.3.3, p. 35).
Approximate string searching is an area of active research, where a lot of practical

and theoretical problems remain unsolved:

— Belazzougui [2009] demonstrates that there exists a hybrid method with the in-
dex size proportional to the dictionary size that answers approximate query in time
proportional to the pattern size for k = 1. How does this result scale to a larger k?

— From [Ukkonen 1993] it follows that the average number of trie nodes visited
during searching can be upper bounded by O(|Σ|knk+1). This estimate predicts a much
faster growth (depending on k) than that observed in our experiments, where retrieval
time increases approximately as 10k. As demonstrated by Navarro and Baeza-Yates
[2000], this estimate can be improved, but the improvement is not significant (see Ap-
pendix C.2.1, p. 79). It would be useful to derive a tighter upper bound for the average
number of visited nodes.
— The FB-trie uses a pair of string tries to satisfy a query. The search algorithm is

a two step procedure that divides the pattern into two parts and searches for the first
part with t ≤ k/2 errors and for the second part with k − t errors. In most practical
situations, the number of child nodes in a trie decreases quickly as the node level
increases. Therefore, the computational cost is dominated by the first step of the search
algorithm, where the maximum allowed edit distance is only t ≤ k/2. However, we are
not aware of any rigorous analysis that supports this conjecture.
— In this survey we show that there is a variety of efficient approximate

search methods, where similarity is expressed in terms of Levenshtein or Damerau-
Levenshtein distance. Brill and Moore [2000] show that, for the purpose of spell-
checking, higher correction accuracy is achieved with the extended edit distance that
allows for weighted substitutions of arbitrary substrings (see Section 2.2).31 Efficiency
of the methods that use the extended edit distance is less studied. Because the ex-
tended edit distance is computationally more expensive, optimization of these methods
is an important research venue.
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DÖMÖLKI, B. 1968. A universal compiler system based on production rules. BIT Numerical Mathematics 8,
262–275.

DOSTER, W. 1977. Contextual postprocessing system for cooperation with a multiple-choice character-
recognition system. IEEE Trans. Comput. 26, 1090–1101.

DU, M. W. AND CHANG, S. C. 1994. An approach to designing very fast approximate string matching algo-
rithms. IEEE Trans. on Knowl. and Data Eng. 6, 4, 620–633.

ELIAS, P. 1974. Efficient storage and retrieval by content and address of static files. J. ACM 21, 2, 246–260.

FALOUTSOS, C. 1996. Searching Multimedia Databases by Content. Kluwer Academic Publisher.

FERRAGINA, P., MUTHUKRISHNAN, S., AND DE BERG, M. 1999. Multi-method dispatching: a geometric
approach with applications to string matching problems. In STOC ’99: Proceedings of the Thirty-First
Annual ACM Symposium on Theory of Computing. ACM, New York, NY, USA, 483–491.

FERRAGINA, P. AND VENTURINI, R. 2007. Compressed permuterm index. In SIGIR ’07: Proceedings of
the 30th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, New York, NY, USA, 535–542.

FIGUEROA, K. AND FREDRIKSSON, K. 2007. Simple space-time trade-offs for AESA. In Experimental Algo-
rithms. Springer Berlin, 229–241.

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article A, Publication date: 00.



Indexing Methods for Approximate Dictionary Searching: Comparative Analysis A:71
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A. PATTERN PARTITIONING PROPERTIES

In this section, we present theorems that provide the theoretical basis for pattern par-
titioning methods. For the following discussion, we consider the restricted edit distance
and restricted edit scripts that do not contain overlapping edit operations (see Section
2.2 for details).

A.1. Searching without Transpositions

LEMMA A.1. Let ED(p, s) ≤ k and the string p be partitioned into j possibly empty
contiguous substrings: p = p1p2 . . . pj . Then there is a partition of s into j possibly empty
contiguous substrings: s = s1s2 . . . sj , such that the following inequality holds:

ED(p1, s1) + ED(p2, s2) + . . . + ED(pj , sj) ≤ k (20)

In addition, for every pi, its starting position differs from the starting position of si by
at most k.

PROOF. Consider an optimal restricted edit script E that transforms p into s. The
length of E is less than or equal to k. Since E does not contain overlapping operations,
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it is possible to partition E into j non-overlapping scripts E1, E2, . . . , Ej such that each
Ei modifies only characters from pi. Insertions between adjacent parts pi and pi+1 that
modify no particular pi can be assigned to either Ei or Ei+1 arbitrarily. Since Ei do not
overlap, their total length is less than or equal to k:

|E1| + |E2| + . . . + |Ej | = |E| = ED(p, s) ≤ k.

It can be seen that application of scripts Ei to respective arguments pi produces sub-
strings si that satisfy the condition of the lemma.

The sum of j non-negative terms ED(pi, si) in Inequality (20) is at most k. Therefore,
at least one of terms in Inequality (20) is less than or equal to ⌊k/j⌋, which leads to the
following theorem:

THEOREM A.2. [Myers 1994; Baeza-Yates and Navarro 1999]. Let ED(p, s) ≤ k and
the string p be partitioned into j possibly empty contiguous substrings p1, p2, . . ., pj

starting at positions ρ1, ρ2, . . ., ρj (ρ1 = 1). Then at least one pi matches a substring
s[τ1:τ2] with at most ⌊k/j⌋ errors. In addition, the position of the matching substring

satisfies |ρi − τ1| ≤ k.

If j = k+1, Theorem A.2 has a well-known corollary: if the string p is divided into k+1
substrings p1, p2, . . . , pk+1, then at least one pi is an exact substring of s [Wu and Man-
ber 1992b]. The position of the matching substring differs from its original positing in
p by at most k. This corollary is the basis for partitioning into exact searching.

Another important corollary is obtained directly from Lemma A.1 for j = 2, when a
string is divided into two parts: p1 and p2. By splitting Inequality (20) into sub-cases
{ED(p1, s1) ≤ i, ED(p2, s2) ≤ k−i} for 0 ≤ i ≤ k and eliminating overlaps, the following
theorem is obtained:

THEOREM A.3. [Mihov and Schulz 2004] Let ED(p, s) ≤ k. If the string p is parti-
tioned into possibly empty contiguous substrings p1 and p2, there exists a partition of
the string s into s1 and s2 such that exactly one of the k + 1 inequalities holds:

ED(p1, s1) = 0 and ED(p2, s2) ≤ k
ED(p1, s1) = 1 and ED(p2, s2) ≤ k − 1

· · ·
ED(p1, s1) = k − 1 and ED(p2, s2) ≤ 1
ED(p1, s1) = k and ED(p2, s2) = 0

A.2. Searching with Transpositions

Now we review well-known extensions of Lemma A.1 and Theorems A.2-A.3 for the
case of the Damerau-Levenshtein distance and transposition-aware searching. The
main idea behind these extensions consists in “compensation” for boundary transposi-
tions.
Let p = p1p2 . . . pj be a partition of the string p into j non-empty substrings. Given

this partition, the i-th boundary transposition is the edit operation that interchanges
the last character of pi with the first character of pi+1. If i + 2 ≤ j and pi+1 = a is
the string the length one, then the i-th boundary transposition “overlaps” with the
(i + 1)-st boundary transposition, because both of them can modify the character a.
For the following discussion, we consider only sequences of non-overlapping boundary
transpositions.

LEMMA A.4. Let ED(p, s) ≤ k and the string p be partitioned into j non-empty con-
tiguous substrings p1, p2, . . . , pj . Then there is a sequence of 0 ≤ t ≤ k non-overlapping
boundary transpositions that convert pi into p̄i and partitioning of the string s into j
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possibly empty contiguous substrings s1, s2, . . . , sj such that

ED(p̄1, s1) + ED(p̄2, s2) + . . . + ED(p̄j , sj) ≤ k − t.

In addition, for every p̄i, its starting position differs from the starting position of si by
at most k − t.

PROOF. Consider an optimal restricted edit script E that transforms p into s. Ac-
cording to our assumptions, E contains at most k elementary edit operations of which
0 ≤ t ≤ k are boundary transpositions. E is a restricted edit script: it does not contain
overlapping operations or operations that modify a single substring twice. Therefore,
we can decompose E into two non-overlapping scripts E1 and E2 such that E1 includes
t boundary transpositions and E2 includes the remaining edit operations. The number
of the remaining operations is at most k− t. Let p̄ = p̄1p̄2 . . . p̄j be the result of applying
E1 to p = p1p2 . . . pj . By construction, E2 transforms p̄ into s with at most k − t edit
operations. Therefore, ED(p̄, s) ≤ k − t.

Note that E2 does not contain any boundary transpositions. Therefore, it may con-
tain only the following operations:

— Insertion between substrings p̄i and p̄i+1;
— Insertion, deletion, substitution, or transposition inside substring p̄i.

Using an argument similar to that of Lemma A.1, we decompose E2 into j non-
overlapping scripts {Ēi} such that each Ēi modifies only substring p̄i. Then we apply
scripts Ēi to respective arguments p̄i and obtain substrings si that satisfy

ED(p̄1, s1) + ED(p̄2, s2) + . . . + ED(p̄j , sj) = |E2|
Since |E2| ≤ k − t, strings si satisfy the condition of the lemma.

The following theorem is an analog of Theorem A.2:

THEOREM A.5. Let ED(p, s) ≤ k and the string p be partitioned into k+1 contiguous
non-empty substrings p1, p2, . . . , pk+1 starting at positions ρ1, ρ2, . . ., ρk+1 (ρ1 = 1). Let
ui represent the string obtained from pipi+1 by the boundary transposition. Let vi be the
string obtained from ui by removal of the last character, if |pi+1| > 1. If |pi+1| = 1, we
let vi = ui. Then at least one pi or vi matches a substring s[τ1:τ2] exactly. In addition, the

position of the matching substring satisfies |ρi − τ1| ≤ k.

PROOF. Consider an optimal restricted edit script E that transforms p into s. If E
does not modify some pi, this pi satisfies the condition of the theorem. Assume now
that E modifies every pi. We use induction by k to show the following: if E contains at
most k edit operations and modifies all substrings p1, p2, . . . , pk+1, there exist i such
that pipi+1 is modified only by boundary transpositions. The first pipi+1 that has this
property also satisfies the condition of the theorem.

Basis: If k = 1, only a boundary transposition can modify both p1 and p2.
Inductive step: We show that if the statement holds for all k′ < k, it also holds for

k′ = k. The following cases are to be considered:

(1) p1p2 is modified only by boundary transpositions.
(2) p1p2 is modified only by insertions, deletions, or substitutions. We need at least two

edit operations to modify both p1 and p2.
(3) p1p2 is modified by the boundary transposition that swaps the last character of p1

and the first character of p2. In addition, p1p2 is modified by at least one insertion,
deletion, or substitution. Optionally, p2 can be modified by a boundary transposi-
tion that swaps the last character of p2 and the first character of p3.
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The first case satisfies the inductive condition. Therefore, we have to consider only
cases 2 and 3.
Let us decompose E into scripts E1 and E2 such that E1 modifies only p1p2 and E2

modifies only p3p4 . . . pk+1. If E does not contain the boundary transposition that swaps
the last character of p2 and the first character of p3, E1 has at least two edit operations
and E2 contains at most k − 2 edit operations.
If E contains the boundary transposition that swaps the last character of p2 and the

first character of p3, we represent this transposition by two substitutions. The first
substitution belongs to the edit script E1 and the second substitution belongs to E2.
Then E1 contains at least three edit operations and E2 contain at most k − 2 edit
operations.
In all cases, E2 has at most k − 2 edit operations and modifies all k − 1 substrings

p3, p4, . . . , pk+1. Therefore, by inductive assumption, there exists i ≥ 3 such that sub-
strings pi and pi+1 are modified only by boundary transpositions.

Extension of Theorem A.3 follows from Lemma A.4:

THEOREM A.6. Let ED(p, s) ≤ k and the string p be of the form p1ab p2, where a and
b are single characters. Then at least one of the following assertions is true:

—The condition of Theorem A.3 holds for the string p, partitioned into p1a and b p2, and
edit distance k;

— The condition of Theorem A.3 holds for modified the string p1ba p2, partitioned into
p1b and ap2, and edit distance k − 1.

B. HASH FUNCTION FOR ALPHABET REDUCTION

To decrease dimensionality, we use the commonly known method that involves hash-
ing. It consists in projecting the original alphabet Σ to an alphabet σ of a smaller size
using a hash function h(c). In addition to hashing of regular characters, i.e., unigrams,
we also consider hashing of the q-gram alphabet Σq, which is comprised of all possible
q-grams.
In our experiments, we use the following hash functions:

—An additive hash function for unigrams: h(Σi) = i mod |σ|;
—An additive hash function for q-grams:

h
(

s[l:l+q−1]

)

=

q−1
∑

i=0

η(q−i)ASCII
(

s[l+i]

)

mod |σ|,

where ASCII(c) is the ASCII value of a character c;
—A frequency-optimized hash function for unigrams.

A frequency optimized hash function produces a reduced alphabet, where all char-
acters have approximately equal probabilities of occurrence. It is constructed using
frequencies of character occurrence in the dictionary. This data is language-dependent
and does not change substantially with N : there is no need to recalculate the fre-
quency distribution of alphabet characters and to rebuild the index every time when a
new string is added to the dictionary.
The problem of constructing the frequency optimized hash function is hard. There-

fore, we opt for an approximate solution based on a simple greedy algorithm. First,
the algorithm sorts Σ in the order of decreasing character frequencies. Then it uses an
iterative procedure that maps characters from the original alphabet to numbers from
1 to |σ| in a way that the sum of frequencies of characters mapped to the same number
i is approximately equal to 1/|σ|.
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C. DISCUSSION ON SEARCH COMPLEXITY AND MEMORY REQUIREMENTS

C.1. Assumptions

Upper bounds for retrieval time and index size are guaranteed only on average. They
are derived using several simplifying assumptions:

—The number of errors is assumed to be small, i.e., k = O(1);
— The theoretical upper bounds for Mor-Fraenkel-based methods and reduced alpha-

bet generation are derived using a simplified language model, where all characters
have equal and independent probabilities of occurrence;

— In the case of the BKT, it is assumed that that probability of encountering a string
at distance i from a pivot is the same for every internal node and does not change
with N .

Additionally, we assume that the following parameters do not change with N either:

—The distribution of patterns;
—The distribution of dictionary strings (strings are generated randomly with replace-

ment);
—The probability of encountering a positional q-gram;
—The probability of encountering a string with a given frequency vector.

Note that in the case of sequence-based filtering methods, it is easy to prove that
retrieval time has a linear term β(n, k)N , but it is difficult to obtain an analytical
expression for β(n, k). Similarly, we empirically verify that the number of frequency
vectors (or reduced alphabet strings) M(N) is small in comparison to N , but do not
provide an analytical justification.

C.2. Prefix Trees

Prefix trees (the string trie, the FB-trie, and the k-errata tree) are discussed in Section
6.1, p. 20.

C.2.1. Search Complexity: String Trie. For simplicity, we consider only transposition-
unaware searching. Given a complete string trie, the number of nodes visited by the
search procedure can be upper bounded by the total number of k-neighborhoods of
various search pattern prefixes:

n
∑

i=1

Uk(p[1:i])

Since Uk(p[1:i]) ≤ 12
5 (i + 1)k(|Σ| + 1)k [Ukkonen 1993], the number of visited nodes is

upper bounded by:

n
∑

i=1

12

5
(i + 1)k(|Σ| + 1)k = O(nk+1|Σ|k) (21)

This estimate also holds for path-compressed tries, which are lossless compact repre-
sentations of complete tries.

Let the node ξ spell the string s. The time spent in ξ depends on the choice of algo-
rithm that verifies whether ED(p, su) ≤ k for some string u. This verification can be
accomplished in O(k) time by computing 2k +1 main diagonals of DP matrix or in O(1)
time using the universal Levenshtein automaton [Wu et al. 1996; Mihov and Schulz
2004]. If k = O(1), a search query can be satisfied in O(|Σ|knk+1) time.

Navarro and Baeza-Yates [2000] presented an average case analysis of suffix trees
that is also valid for generic string tries. Below we explain why their result is only
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marginally better than Expression (21) in many practical situations including our ex-
perimental setup.
According to their analysis, the number of visited nodes is upper bounded by

{

|Σ|
k√

|Σ|/c−1 + (1 + k/n)2(n+k)(n/k)2k

}

|Σ|k, (22)

where c < e and |Σ| > c2. If |Σ| ≤ c2, the estimate (22) does not contain the first
summand. According to empirical assessment by Navarro and Baeza-Yates [2000], c
should be close to 1, but this has not been demonstrated analytically.

In the case of natural languages
√

|Σ| ≥ c ≥ e. Therefore, the first summand inside

the curly brackets in (22) can be lower bounded by |Σ|
“√

|Σ|/e−1
”−1

, which is a decreas-

ing function of variable |Σ| for
√

|Σ| > e. For |Σ| ≤ 36, this lower bound is greater than
19. Thus, for our datasets Expression (22) is greater than

|Σ|k19k (23)

For the DNA data used in our experiments, n ≥ 11, k ≤ 3, and k ≤ √
n. Therefore,

the second summand inside the curly brackets in (22) is at least nk and the Expression
(22) is greater than

|Σ|knk (24)

It can be seen that neither (23) in the case of natural language data nor (24) in
the case k ≤ √

n do not significantly improve over Expression (21). Furthermore, they
predict a much faster growth (depending on k) than that observed in our experiments,
where retrieval time increases approximately as 10k (see Section 8.3.2, p. 54).

C.2.2. Index size. In the next subsection we present Theorem C.1, which estimates the
index overhead of the path-compressed trie, i.e., the difference between the size of the
trie and the size of the dictionary. According to Theorem C.1, p. 81, is upper bounded
by:

(2P + 2)N,

where P is the size of the pointer.
If λ = 10 (the average string length) and P = 4, from Theorem C.1 it follows that the

size of the trie is at most twice as large as the size of the dictionary itself. In practice
(see Table IX, p. 65), the size of the trie varies from 115 to 170 percent of the dictionary
size. It can be also seen that the FB-trie uses about twice as much space as the regular
trie.

C.2.3. Upper Bounds for Size of Path-Compressed Trie. The path-compressed trie has two
components: a set of edge labels that represent dictionary strings and auxiliary data
that supports the structure of a hierarchical tree. The index overhead is the difference
between the size of the path-compressed trie and the total size of dictionary strings. It
is convenient to estimate overhead associated with a subtree divided by the number of
strings stored in this subtree. Because each subtree is associated with a string prefix
(shared among all strings in this subtree), we refer to this overhead as the “per-prefix”
overhead.
For the purposes of this analysis, we assume the following storage model: an internal

node ξ stores a string label of the incoming edge (connecting ξ with its parent node), a
counter of child nodes, pointers to child nodes, and lengths of string labels for outgoing
edges (connecting ξ with its child nodes). A leaf node stores a counter of child nodes
that is equal to zero and the string label of the incoming edge. The dictionary is rep-
resented by concatenated strings, each of whom is terminated with a special zero-code
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character. In addition, we assume that both the alphabet size and string lengths are
less than or equal to 255. Thus, all counters need one byte. The size of the pointer is P
bytes.

THEOREM C.1. Given the storage model described above, the index overhead of the
path-compressed string trie does not exceed N(2P +2), where N is the number of dictio-
nary strings.

PROOF. The proof consists in recursive evaluation of the per-prefix overhead. As-
sume that the node ξ is at the level n and its per-prefix overhead is En. Let the length
of the incoming label be lp and the number of children be nc. Two cases have to be
considered.

ξ is an internal node. Because the trie is path-compressed, nc ≥ 2. To store the
pointers to child nodes, the counter of child nodes, and lengths for outgoing edge labels
we need nc + 1 + ncP = nc(P + 1) + 1 bytes. The path-compressed trie keeps only one
copy of the incoming edge label, instead of nc copies that would have been kept if the
dictionary were represented by concatenated strings. Therefore, storing data in the
form of the trie decreases the per-prefix overhead by lp(nc − 1) bytes at the level n + 1.

To obtain the per-prefix overhead associated with a child of ξ, we first sum the per-
prefix overhead En (associated with ξ) and the overhead incurred by storing auxiliary
data (pointers and counters). Then we subtract savings achieved by sharing the incom-
ing edge label among children of ξ and divide the result by the number of child nodes
nc:

f(lp, nc) = (nc(P + 1) + 1 + En − (nc − 1)lp) /nc = P + 1 + (En + 1)/nc − (1 − 1/nc)lp

For lp ≥ 1 and nc ≥ 2 the function f(lp, nc) has negative partial derivatives with respect
to lp and nc. Therefore, it achieves the maximum at lp = 1 and nc = 2. This implies

En+1 ≤ P + 3/2 + En/2 − 1/2 = P + 1 + En/2

From E0 = 0 it follows that

En ≤ (P + 1)
(

1 + 1/2 + . . . + 1/2n−1
)

≤ 2P + 2

ξ is a leaf. The node stores only a string label of incoming edge and a one-byte
counter. The string label corresponds to the suffix of a dictionary string and does not
incur any overhead. Because each string in the dictionary is terminated with a zero-
code character that uses the same space as the counter (one byte), the overhead of ξ is
equal to En. Above it has been demonstrated that En ≤ 2P + 2.

C.3. Neighborhood Generation

Neighborhood generation methods are discussed in Section 6.2, p. 25.

C.3.1. Search Complexity: Full Neighborhood Generation. Neighborhood generation reduces
approximate searching to exact dictionary searching by building a string neigh-
borhood. Let n be the length of the search pattern p. Both the size of the full
k-neighborhood and its construction time are O(nk|Σ|k) (see Equation (12), p. 26).
Since exact dictionary searching can be done in O(n) time, the average search time
of full neighborhood generation is O

(

nk+1|Σ|k
)

.

C.3.2. Search Complexity: Reduced Alphabet Neighborhood Generation

THEOREM C.2. The average retrieval time of reduced alphabet generation is:

O

(

nk+1|σ|k
{

1 +
L(n, k)

|σ|n
})

(25)
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PROOF. During the search time, the pattern p is converted into the reduced pattern
p′ = h(p) by a character-wise application of the hash function h(c). Then the search
procedure recursively creates the full neighborhood of p′ using the reduced alphabet σ
and a wildcard neighborhood of the original pattern. Because the size of the wildcard
neighborhood is much smaller than a size of the full neighborhood, the computational
cost of this step is O(nk|σ|k).
For each string s′ from the full neighborhood of p′, the search procedure retrieves dic-

tionary strings si such that h(si) = s′ and verifies whether si matches p by comparing
si to elements from the wildcard neighborhood of p. The total number of comparison
operations at this step is equal to µ|s′|, where µ is the number of si.
Wemodel µ as a number of outcomes in a series of Bernoulli trials. Each trial consists

in picking up a random string si of the length n′ = |s′| and verifying whether h(si) = si.
In addition, we assume that the hash function h(c) performs a uniform mapping and,

therefore, the probability of success is equal to |σ|−n′

. Under these assumptions, the
expected number of operations (equal to µn′) is upper bounded by

N(n′)n′

|σ|n′ ≤ L(n, k)n′

|σ|n′ , (26)

where N(n′) is the number of dictionary strings with length n′ and L(n, k) =
max|i−l|≤k N(i).
To obtain an upper bound for the average number of comparisons associated with the

full neighborhood of p′, we will sum up the values of Expression (26) for all neighbor-
hood strings s′. Because for |Σ| ≥ 2 and n′ ≥ 1, n′|σ|−n′

is a monotonically decreasing
function of n′, for n′ > n each summand is upper bounded with L(n, k)n|σ|−n It remains
to estimate the summands for n′ ≤ n.

If n′ (the length of s′) is equal to n − t, then s′ is obtained from p′ using t deletions
and k − t other edit operations. Because the number of ways to apply t deletions to a
string of the length n is O(nt), the number of neighborhood strings of the length n − t
is upper bounded by

O(nt × nk−t|σ|k−t) = O(nk|σ|k−t). (27)

The number of neighborhood strings that contain n or more characters is upper
bounded by the size of the full reduced-alphabet neighborhood: O(nk|σ|k).

Combining these observations and Expression (26), we get that the expected number
of comparisons is upper bounded by

k
∑

t=0

L(n, k) × (n − t)nk|σ|k−t

|σ|n−t
<

knk+1L(n, k)

|σ|n−k
. (28)

The upper bound for the total number of operations is obtained from (28) by adding
the number of operations required to generate the full reduced-alphabet neighborhood
of p′, and to search for its each elements exactly.

C.3.3. Search Complexity: Mor-Fraenkel Method. Let us consider the transposition-
unaware modification of the Mor-Fraenkel method for k = 1. Given the pattern p,
the search procedure generates n triples (∆i(p), i, p[i]). For each triple (∆i(p), i, p[i]), we
retrieve dictionary triples (s′, j, a) such that ∆i(p) = s′.
The time needed to retrieve triples using n keys {∆i(p)} is O(n2). The time needed

to process retrieved triples is proportional to the number of strings s ∈ W that sat-
isfy ∆i(p) = ∆j(s) for some i and j. In the worst case, the number of such strings is
O(n2|Σ|), but typically few of those belong to the dictionary.
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THEOREM C.3. The average retrieval time of the Mor-Fraenkel method is:

O

(

nk+1

{

1 +
nk−1L(n, k)

|Σ|n−k

})

. (29)

PROOF. In the general case, the search procedure generates O(nk) strings by ap-
plying up to k deletions and searches for each generated string in an l-deletion index
(l ≤ k). Each query to the l-deletion index runs in O(n) time and returns at most
O(nk|Σ|k) strings. We model the actual number of returned strings as a total number
of successes in O((k + 1)2nk) series of Bernoulli trials.

Let p′ be obtained from p by deleting k1 ≤ k characters, which can be done in O(nk1)
ways. Each 0 ≤ k2 ≤ k corresponds to a series of trials, where we check whether
O(nk2 |Σ|k2) strings obtainable from p′ by k2 insertions belong to the dictionary. Because
all such strings have length n− k1 + k2, we assume that this verification succeeds with
a probability equal to L(n, k)|Σ|−n+k1−k2 , where L(n, k) = max|i−l|≤k N(i) and N(i) is
the number of dictionary strings of the length i. Therefore, the expected number of
successes in a single series of trials is

O

(

nk1+k2L(n, k)

|Σ|n−k1

)

= O

(

n2kL(n, k)

|Σ|n−k

)

(30)

By adding time spent to perform O(nk) exact searches, from (30) and k = O(1) we
obtain the following asymptotic upper bound for the average retrieval time of the Mor-
Fraenkel method:

O

(

nk+1

{

1 +
nk−1L(n, k)

|Σ|n−k

})

.

Because k = O(1), correction for transpositions takes little additional time and, there-
fore, the same upper bound holds for the transposition-aware version.

C.3.4. Search Complexity: Hybrid Neighborhood Generation. Hybrid neighborhood gener-
ation combines computation of the full (k − l)-neighborhood at query time with
the Mor-Fraenkel method that evaluates and stores deletion-only t-neighborhoods
during indexing (t ≤ l). At query time, the search procedure generates the full
(k − l)-neighborhood of the pattern p. The neighborhood contains O((n|Σ|)k−l) ele-
ments. Each element of this neighborhood is then searched for in the index of the
Mor-Fraenkel method within l errors. Retrieval time depends on the length of the
searched string, which ranges from n − k + l to n + k − l.
Analogous to the analysis of reduced alphabet neighborhood generation, we upper

bound the contribution of strings longer than n characters by a larger term (that rep-
resents retrieval time for the pattern exactly n characters long). Then, using the upper
bound for the number of neighborhood strings shorter than n given by Equation (27)
and the estimate for the Mor-Fraenkel method given by Equation (29) for k = l, we
obtain that for k ≥ l the total average retrieval time is upper bounded by

k−l
∑

t=0

O

(

(n − t)l+1

{

1 +
(n − t)l−1L(n, l)

|Σ|n−t−l

}

× nk−l|Σ|k−t−l

)

=

O

(

nk+1|Σ|k−l

{

1 +
nl−1L(n, l)

|Σ|n−l

})
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For k ≤ l, the algorithm works as the Mor-Fraenkel method. Therefore, in the general
case the average retrieval time is upper bounded by

O

(

nk+1|Σ|k−k′

{

1 +
nk′−1L(n, k′)

|Σ|n−k′

})

, where k′ = min(k, l). (31)

C.3.5. Search Complexity: Dense Dictionaries and Short Patterns. Reduced alphabet gener-
ation, the Mor-Fraenkel method, and hybrid neighborhood generation are filtering
methods. The average time of their verification steps depend on L(n, k), which is ap-
proximately equal to the number of strings of the length n. In the upper bounds given
by Expressions (25), (29), and (31) the cost of verification is represented by a second
summand inside the curly brackets.
If the dictionary is sparse and n is sufficiently large, this summand is less than one.

If the dictionary is dense, L(n, k) ≈ |Σ|n. Consequently, reduced alphabet generation
becomes equivalent to full neighborhood generation, while for k > 1 the Mor-Fraenkel
method becomes slower than full neighborhood generation (by the factor of nk−1). We
suppose that a transducer-based variant of the Mor-Fraenkel method would be slower
than full neighborhood generation by the factor of 2k, but we have not proved it rigor-
ously.
A similar performance degradation is observed for short patterns and prefix-dense

dictionaries. Even though short patterns are infrequent and, thus, contribute to the
overall average retrieval time with a smaller weight, retrieval of short strings can be
quite expensive. In our experiments, we have found that full neighborhood generation
is significantly more efficient than hybrid neighborhood generation-2 for k = 3 and
small n ≈ 4.

C.3.6. Index size: Full and Reduced Alphabet Generation. One of the fastest methods for
exact searching is hashing based an open addressing. It comprises a dictionary stored
as a plain file and a hash table that is used to locate dictionary strings. The hash
table represents the index overhead and occupies O(N) space, where implied constant
largely depends on an implementation (a similar estimate is obtained if the dictionary
is stored as a trie, see Theorem C.1, Section C.2.2).
A straightforward implementation of a hash table keeps N/α pointers, where α is

a load factor of the hash table. A space-efficient implementation described in 4.1 uses
only several extra bits per string.
In the case of reduced alphabet generation, the overhead is proportional to the num-

ber of unique “hashed” strings. This number is typically much smaller than N . There-
fore, reduced alphabet generation has a smaller index overhead.

C.3.7. Index Size: Super-Condensed Neighborhood. Our implementation of super-
condensed neighborhood generation employs an inverted file for a subset of dictionary
substrings. This solution is fast but space-inefficient. A more space-efficient solution
would employ a suffix-tree-like data structure that uses space O(λN). Further reduc-
tion in space may be achieved by using a compressed suffix tree/array.

C.3.8. Index Size: Mor-Fraenkel method and Hybrid Neighborhood Generation. The index-
ing step of the Mor-Fraenkel method consists in building and storing deletion-only
l-neighborhoods of dictionary strings for all l ≤ k. The number of neighborhood ele-
ments can be upper bounded by O((λm)kN), where λm represents the maximum length
of dictionary strings.
Each neighborhood element requires O(λm) byte of storage. Therefore, the index size

can be upper bounded by O((λm)k+1 · N). Hybrid neighborhood generation method,
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stores deletion-only t-neighborhoods for t ≤ l < k. Therefore, both the index size and
the index overhead are O((λm)l+1 · N).
A transducer-based variant of the Mor-Fraenkel method has smaller space require-

ments, but we are unaware of analytical estimates for k > 1.

C.4. Metric Space Methods

Metric space methods are discussed in Section 6.3, p. 34.

C.4.1. Search complexity. Running time of the BKT is known to be O(Nβ(k)) on average,
where β(k) < 1 [Baeza-Yates and Navarro 1998]. According to the evaluation of Baeza-
Yates and Navarro [1998], β(1) ≈ 0.69 and β(2) ≈ 0.87 if b = 20.

C.4.2. Index size. Each BKT leaf node represents a bucket that stores at most b ele-
ments. The overhead associated with the BKT index is equal to the space occupied by
internal nodes. To calculate this overhead, we estimate an expected number of inter-
nal nodes using a recursive analysis similar to that of Baeza-Yates et al. [1994]. To this
end, we model the random process of distributing the strings among subtrees during
indexing using a multinomial distribution.

Henceforth I(N) denotes the number of internal nodes.

PROPERTY C.4. It can be seen that I(N) satisfies the following:

— I(N) ≤ N − 1, because each internal node stores a (pivot) string and at least one of
the strings will be stored in a bucket;

— If N ≤ b then I(N) = 0, because all elements are stored in a single BKT bucket.

THEOREM C.5. The average index overhead of the BKT can be asymptotically upper
bounded by:

O(λmP min(N, (N/b)γ)), for some γ > 0. (32)

PROOF. Consider one step of the indexing process that consists in choosing a ran-
dom pivot and dividing the remaining N − 1 strings into λm subsets {Wi} (λm is the
maximum length of dictionary strings). Recall that Wi contains strings at distance i
from the pivot. Let Bi denote an event of placing a string into the i-th subset on a given
trial. According to our assumptions, probabilities Pr(Bi) do not depend neither on the
choice of the pivot nor on N .
Let ǫ be a small positive number and Ai be an event such that, after N − 1 trials, the

actual number of strings ji in the i-th subset Wi diverges from the expected number
of strings by more than ǫ(N − 1). Note that the number of strings in Wi follows the
binomial distribution with the probability Pr(Bi). Therefore, |ji − (N − 1)Pr(Bi)| >

ǫ(N − 1) in the case of the event Ai. Let also A = ∪λm
i=1Ai be an event such that the

number of strings in at least one of the subsets diverges from the respective expected
value by more than ǫ(N − 1).

According to the Hoeffding’s inequality [Hoeffding 1963], Pr(Ai) ≤ 2e−2ǫ2(N−1) and
Pr(A) satisfies the following inequality:

Pr(A) = Pr

(

λm
⋃

i=1

Ai

)

≤
λm
∑

i=1

Pr(Ai) ≤ 2λme−2ǫ2(N−1) (33)

In what follows, we estimate the expected value of I(N) using expectations condi-
tioned on the event A and its complement Ā:

E(I(N)) = E(I(N)|A)Pr(A) + E(I(N)|Ā)Pr(Ā) (34)
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In the case of the event A, we pessimistically assume that the number of internal nodes
is equal to N − 1. Then, from Inequality (33) it follows that

E(I(N)|A)Pr(A) ≤ (N − 1)Pr(A) ≤ 2λm(N − 1)e−2ǫ2(N−1)

For α > 0, xe−αx achieves the maximum value of 1
αe . By setting α = 2ǫ2, x = N −1, and

applying xe−αx ≤ 1
αe to the inequality above, we obtain the following upper bound:

E(I(N)|A)Pr(A) ≤ λm

ǫ2e
(35)

E(I(N)|Ā) is expressed using the sum of expected numbers of internal nodes asso-
ciated with subsets {Wi}. This sum should be incremented by one to account for the
internal node that stores the current pivot:

E(I(N)|Ā) = 1 +

λm
∑

i=1

E(I(ji|)), (36)

where ji is the actual number of strings in Wi.
In the case of the event Ā, every ji satisfies |ji− (N −1)Pr(Bi)| ≤ ǫ(N −1). Therefore,

Equation (36) implies the following inequality:

E(I(N)|Ā) ≤ 1 +

λm
∑

i=1

max
|ji−(N−1)Pr(Bi)|≤ǫ(N−1)

E(I(ji)) (37)

By upper bounding Pr(Ā) with 1, combining Property C.4, Equation (34), Inequali-
ties (35), and (37), we obtain that the expected number of internal nodes satisfies the
following recurrent inequality:

E(I(N)) ≤ C(ǫ) +

λm
∑

i=1

max
|ji−(N−1)Pr(Bi)|≤ǫ(N−1)

E(I(ji)), where C(ǫ) = 1 +
λm

ǫ2e

E(I(N)) = 0, N ≤ b (38)

One approach to cracking Recurrence (38) is to assume that there exist a solution
that is monotonic with respect to N . This assumption allows one to simplify (38). Then,
the estimate for E(I(N)) can be found using the simplified recurrence. If the function
obtained is monotonic, then it is also a solution for the original recurrence. The validity
of this approach follows from the monotonicity of the right-hand side of Recurrence (38)
with respect to E(I(ji)) and can be proved using induction.
This implies that a solution should be evaluated using the following recurrence:

E(I(N)) = C(ǫ) + λmE(I(⌊(N − 1)(ρ + ǫ)⌋)), (39)

where ρ = maxPr(Bi) is the maximum probability of placing a string into Wi. If ǫ <
1 − ρ and, consequently ρ + ǫ < 1, we can unfold Recursion (39) to obtain the following
asymptotic upper bound:

E(I(N)) = O

(

C(ǫ)λ
log 1

ρ+ǫ
N/b

m

)

= O

((

1 +
λm

ǫ2e

)

(N/b)
log 1

ρ+ǫ
λm

)

= O((N/b)γ). (40)

If one of the probabilities Pr(Bi) and, consequently, their maximum ρ are close to
one, a majority of strings will be placed into the i-th subtrees, which will result in a
highly unbalanced tree. This tree will have large height and a lot of internal nodes.
This intuition is supported by Expression (40), which converges to infinity when ρ
approaches 1 − ǫ.
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Because ED(u, v) ≤ λm for any u, v ∈ W , each internal node contains at most λm

child pointers of size P . Thus, the average overhead is upper bounded by

O(λmP (N/b)γ), for some γ > 0.

Combining this estimate with inequality E(I(N)) ≤ N , we obtain the final asymptotic
upper bound for the average index overhead.

For small b the index overhead can be larger than the dictionary. As b grows, the
overhead decreases. For example, for b = 200, which yields an optimal retrieval speed
in the case of natural language data, the overhead is 4 percent of the dictionary size
(see Table IX, p. 65).

C.5. Pattern Partitioning

C.5.1. Search complexity: General Observations. Pattern partitioning methods are dis-
cussed in Section 7.1, p. 37. In what follows we show that the retrieval time of the
inverted q-gram file (see Section 7.1.2, p. 38), which employs partitioning into exact
searching, is proportional to the number of dictionary strings N .

In general, the time spent on checking candidate strings is proportional to proba-
bilities of encountering string fragments, which, according to our assumptions, do not
change with N . If string fragments are small, the overall retrieval time is dominated
by the checking step. In this case, it is possible to show that the retrieval time of every
filtering method that relies on indexing of small string fragments is proportional to N .

C.5.2. Search complexity: Inverted q-gram File. The first assumption ensures that the
probability of encountering any given positional q-gram does not depend on N , but
allows for repeating strings. It also guarantees that given the set of positional q-grams
{(si, τi)}, the probability of encountering a string that includes q-grams s1, s2, . . . at
positions τ1, τ2, . . . (i.e., the probability of q-gram co-occurrence), does not depend on
N .

Let Pr(p) be the probability of encountering search pattern p. Let C denote the com-
putational complexity of the search procedure of the inverted q-gram file. Then the
expected value of C is

E(C) =
∑

i

E(C|pi)Pr(pi), (41)

where the summation is carried over all possible patterns. E(C|pi) is the conditional
expected value of the number of computations. It can be represented as a sum of three
terms:

E(C|pi) = Efilt(p, k) + Echeck(p, k) + Eaux(p, k),

where Efilt(p, k) is the expected value of the computational cost of the filtering step,
Echeck(p, k) is the expected value of the computational cost of the checking step, and
Eaux(p, k) is the expected value of the computational cost associated with search in the
auxiliary index. As we explain below the expected value satisfies:

0 < β1(p, k)N ≤ E(C|pi) ≤ β2(p, k)N, (42)

where functions β1(p, k) and β2(p, k) depend only on the search pattern p and the max-
imum allowed distance k. By plugging Inequality (42) into Equation (41), we obtain
that the overall expected computational cost is O(β(k)N) for some β(k) that depends
only on k.

Assuming that the auxiliary index is represented by a plain file (that keeps strings
of limited length and is searched sequentially) and string distribution does not depend
on N , it is easy to show that Eaux(p, k) ≤ βaux(p, k)N . In what follows, we show that
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the expected computational cost of the filtering step is βfilt(p, k)N . Using a similar ar-
gument and the assumption that the probability of co-occurrence of positional q-grams
does not depend on N , it is possible to show that an analogous estimate holds for the
computational cost of the checking step.
A search algorithm that employs the inverted q-gram index can be outlined as fol-

lows:

(1) Given the pattern p and the maximum allowed distance k, the search procedure
computes the set of positional q-grams {(si, τi)} that is determined only by p and k;

(2) Then it retrieves sorted inverted lists Si of positional q-grams {(si, τi)} computed
in Step 1;

(3) A new set of inverted lists is obtained by merging some of the inverted lists com-
puted in Step 2;

(4) A new set of inverted lists is obtained by intersecting some of the inverted lists
computed in Step 3;

(5) Finally, inverted lists computed in Step 4 are merged together.

Note that an intersection and/or a union of sorted inverted lists S1 and S2 can be
computed by the merging algorithm in time proportional to |S1| + |S2| (in some cases
it can be done faster, e.g., when one list is much longer than another). Therefore, the
computation of intersections and/or unions in each of the Steps 3 to 5 can be done in
time proportional to the total number of inverted list elements, produced in a previous
step.
Because the total number of inverted list elements does not increase through Steps

3 to 5, the running time of the filtering step is upper-bounded by α × 3 ×∑ |Si|, for
some α > 0. On the other hand, the running time is lower bounded by the total length
of inverted lists retrieved in Step 2, which is equal to

∑ |Si|.
The inverted list Si corresponds to the positional q-gram {(si, τi)}. Let Pr(Si) =

Pr(si, τi) denote the probability of q-gram si to occur at position τi. Then the expected
value of

∑ |Si| is:
∑

i

NPr(Si) = N
∑

i

Pr(si, τi) = βfilt(p, k) · N,

where the factor βfilt(p, k) depends only on the pattern p and the maximum allowed
edit distance k.

C.5.3. Index size: Inverted q-gram File. The inverted q-gram file has four components: a
list of dictionary strings, an indexed list of q-grams with pointers to corresponding in-
verted lists, inverted lists, and an auxiliary index built over short strings. Dictionary
strings can be stored as a plain file, which uses O(λN) bytes, where λ is the aver-
age length of dictionary string. Because there are at most |Σ|q non-positional q-grams
and at most λm|Σ|q positional q-grams, the space requirement for the list of indexed
q-grams is O(λm|Σ|q). The auxiliary index uses O(β(q, k)N) space, where β(q, k) ≪ 1
depends only on q and k.
The size of the third index component is proportional to the total number of in-

verted lists entries. Each positional q-gram corresponds to a unique inverted list entry,
while each padded dictionary string of the length m contains m positional q-grams.
Therefore, the total number of inverted list entries is λN and uncompressed inverted
lists use space λNP , where P is the size of the pointer. The total size of the index is
λNP + O(λN) + λm|Σ|q + β(q, k)N = O(λm|Σ|q + λN(P + 1)). The index overhead,
i.e., the difference between the size of the index and the size of the dictionary, is
O(λm|Σ|q + λNP ).
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If P = 4, the size of uncompressed inverted q-gram file is at least five times the size
of the dictionary. To reduce the index size, we use a well-known approach that consists
in compression of inverted lists using variable-length codes [D’Amore and Mah 1985;
Zobel et al. 1993]. An inverted list is essentially a list of integer numbers. Therefore, it
can be sorted and represented as a sequence of differences between adjacent elements.
Since most differences are small, they can be stored using little space.

Consider, for example, an integer list that contains numbers 355, 100, 457, 657.
The compression algorithm first re-sorts the list and obtains the list x = (100, 355,
457, 657). Then all but the first element of x are substituted with xi − xi−1. As a result,
x is transformed into the list (100, 255, 102, 200), where each list element can be stored
using one byte. In the general case, the differences may not fit into one byte and have
to be encoded using codes of variable length: the smaller is the number, the shorter
is the code. In our implementation, we use the variable-byte code, which is aligned by
byte boundaries (see, e.g., [Scholer et al. 2002] for details).
If compression is applied, the q-gram index overhead is O(λm|Σ|q + αcomp · λNP ),

where compression ratio αcomp depends on the choice of compression algorithm, type
of q-gram and its size q. In the case of non-positional q-grams and q = 2, αcomp can be
less than 0.2 [Zobel and Dart 1995]. In our experiments, we index positional q-grams
longer than two characters and achieve αcomp in the range from 0.4 to 0.8.

The reason for this difference is that the number of occurrences of a positional
q-gram with q ≥ 3 is usually much smaller than that of a non-positional q-gram with
q = 2. Therefore, a typical difference between adjacent inverted list elements is much
larger and requires many more bits to be encoded. Division of a dictionary based on
string lengths leads to even larger differences between adjacent inverted list elements
and to less space-efficient encoding. Also note that we use byte aligned codes, which
are less space efficient than bit-aligned codes.

C.6. Vector Space Frequency Distance Methods

Mapping to vector methods are discussed in Section 7.2, p. 42.

C.6.1. Search complexity. According to our assumptions, for any given frequency vector
x, the probability of encountering the string s such that vect(q-grams(s)) = x does not
depend on the size of the dictionary N .
Each of the vector space methods involves both a filtering step and a checking step.

Using these assumptions and considering probabilities of encountering a string with
the frequency vector x that satisfies

FD(vect(q-grams(p)), x) ≤ k(q + [transposition-aware and q > 1])

it is possible to show that the conditional expectation of the computational cost of the
checking step is β(p, k)N , where β(p, k) depends on the search pattern p and the max-
imum allowed edit distance k. Then by summing conditional expectations multiplied
by probabilities of the pattern occurrence, we obtain that the expected computational
cost of the checking step is β(k)N , for some β(k) that depends only on k.

From Inequality (46), p. 91, it follows that, in the case of frequency vector tries, the
computational cost of the filtering step is

O
(

(m + k · µ(q) + 1)2k·µ(q)+1
)

= o(N),

where µ(q) = q+[transposition-aware and q > 1]. For signature hashing, the cost of the
filtering step is O(2m), where m is the signature size. If we assume that the signature
size m is constant and does not change with N , then the cost of the filtering step is
o(N).
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Therefore, the expected computational cost for each of the vector space methods (sig-
nature hashing, the unigram frequency vector tries, and the q-gram frequency vector
tries) is

o(N) + β(k) · N = O(β(k) · N). (43)

C.6.2. Index size. An index of the method that involves mapping to vector space has
three components: a general vector space data structure that stores frequency vectors
or signatures, dictionary strings grouped into buckets (all strings in a bucket have the
same frequency vector or signature), and pointers to buckets.

Buckets with strings use the same space as the dictionary itself: O(λN), where N
is the number of dictionary strings and λ is the average dictionary string length. The
space used by the vector space data structure and pointers to buckets represents index
overhead.
For signature hashing, the data structure is simply an array of size 2m, where each

element contains a bucket pointer (m is the signature size). Therefore, the index over-
head is 2mP bytes (P is the pointer size).
Consider a frequency vector unigram or q-gram trie. Let M(N) ≤ N be the number

of unique q-gram (or unigram) frequency vectors. From Theorem C.1, p. 81, it follows
that the frequency vector trie uses space M(N) · (m + 2P + 2). Because pointers to
buckets use M(N)P bytes, the total index overhead is

M(N) · (m + 3P + 2) = O(N)

We have verified empirically that M(N) is small in comparison to N . For example,
a synthesized dictionary with 3.2 million strings used in our experiments, produces
less than 300 thousand unigram frequency vectors of the size 10 and less than 300
thousand bigram frequency vectors of the size 9. However, we cannot demonstrate this
property analytically.

C.6.3. Estimate of Search Complexity for Frequency Vector Trie. Let us consider a frequency
distance query with the pattern z and the maximum allowed frequency distance R. The
maximum allowed distance R is an integer. To obtain the search complexity estimate,
we calculate the upper bound for the number of nodes V (z,R, l) visited by the search
procedure at level l. It can be seen that V (z,R, l) is equal to the number of vectors x
generated from z by modifying first l elements so that FD(z, x) ≤ R. Note that both z
and x contain only non-negative integer elements. The total number of all nodes visited
during the search is upper bounded by:

m
∑

l=1

V (z,R, l), (44)

where m is the length of frequency vector.

LEMMA C.6.

V (z,R, l) ≤
(

l + R

R

)2

PROOF. V (z,R, l) can be upper bounded by the number of possibly negative integer-

valued vectors y of the size l, such that FD(y,~0) ≤ R. From the definition of frequency
distance it follows that vectors y satisfy:

(1) the sum of positive vector elements is less than or equal to R;
(2) the sum of negative vector elements is greater than or equal to −R.
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The number of ways to choose positive vectors elements in Case (1) is equal to:

R
∑

i=0

(

i + l − 1

i

)

=

(

l + R

R

)

.

The number of ways to choose negative vector elements in Case (2) is identical to Case
(1). Therefore, the total number of vectors y such that FD(y,~0) ≤ R is upper bounded

by
(

l+R
R

)2
.

From Lemma C.6 it follows that the total number of nodes (including internal ones)
visited during the search is upper bounded by:

m
∑

l=1

V (z,R, l) ≤
m
∑

l=1

(

l + R

R

)2

≤
m
∑

l=1

(l + R)2R

(R!)2
. (45)

The summation term in 45 is a monotonically growing function of l. Hence, we can
upper bound the sum by the corresponding integral (from 2 to m+1) to obtain the final
estimate:

∫ m+1

l=2

(l + R)2R

(R!)2
dl =

(l + R)2R+1

(R!)2(2R + 1)

∣

∣

∣

∣

m+1

2

<
(m + R + 1)2R+1

(R!)2(2R + 1)
(46)

D. EDIT DISTANCE ADDENDUM

D.1. Proof of theorem 2.8

THEOREM. From Property 2.4, p. 7, and Property 2.7, p. 8, it follows that

—For any two strings p and s, there exist a script with the minimum cost, i.e., the edit
distance from p to s is properly defined.

—The generic edit distance described by Definition 2.6 is a metric [Wagner and Fischer
1974]

PROOF. To prove that ED(p, s) is a metric, we need to show that ED(p, s) exists and
is a positive definite, symmetric, and subadditive (i.e., satisfies the triangle inequality)
function.

From Properties 2.7, it follows that the cost function is non-negative and that only
an identity operation has zero cost. Therefore, without a loss of generality, we can focus
on edit scripts that do not have identity operations. Thus, if p = s, the only optimal
edit script (that does not contain identity operations) is empty and has zero cost. If
p 6= s, from the completeness of the set of the basic edit operations it follows that there
exists one or more edit script that transforms p into s. All such edit scripts consist of
edit operations with strictly positive costs.

Let γ be the cost of an arbitrary script that transforms p into s. Consider the set of
edit scripts A that transform p into s and whose costs are upper-bounded by γ. A is
non-empty and consists of edit operations with positive costs less than γ. The set of
basic edit operations whose costs are upper bounded by γ is finite, which proves that
A is also finite. Because A is non-empty and finite, the edit script with the minimum
(positive) cost exists and belongs to A. Thus, ED(p, s) > 0 for p 6= s, i.e., the edit distance
is positive definite.

Symmetry of edit distance follows from symmetry of the cost function and from sym-
metry of the set of basic edit operations B. To prove symmetry of edit distance we con-
sider an optimal script E that transforms p into s and a corresponding reverse script
script Er that transforms s into p. It is possible to demonstrate that δ(E) = δ(Er).
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To prove subadditivity, we consider an optimal script E1 that transforms p into s,
an optimal script E2 that transforms s into w, and a composition of scripts E1E2 that
transforms p into w. From δ(E1E2) = δ(E1)+δ(E2) = ED(p, s)+ED(s, w) and δ(E1E2) ≥
ED(p,w) it follows that ED(p, s) + ED(s, w) ≥ ED(p,w).

D.2. Justification of Mor-Fraenkel Method: Transposition-Unawa re Method for k > 1

Let p = p1p2 . . . pη and s = s1s2 . . . sη be a partition of strings p and s that defines an
optimal alignment (see Section 2.2). Additionally assume that ρl is a starting position
of pl in p and τl is a starting position of sl in s.
In the case of Levenshtein distance, substrings pl and sl are either single characters

or the empty strings. In addition, pl and sl are not non-empty at the same time. If
ED(p, s) = k, there are exactly k indices li such that pli 6= sli .

Let Ap = {ρli | pli 6= ǫ and pli 6= sli} be the ordered subset of starting positions of non-
empty substrings pl that do not match respective sl, and As = {τli | sli 6= ǫ and sli 6= pli}
be the ordered subset of starting positions of non-empty substrings sl that do not match
respective pl.

OBSERVATION D.2. If we delete non-empty substrings pli 6= sli from p and non-
empty substrings sli 6= pli from s, we obtain two equal strings. This is equivalent to
deleting single characters from p and s whose positions belong to the sets Ap and As,
respectively.

OBSERVATION D.3. Multisets Dp = (Ap
1, A

p
2 − 1, Ap

3 − 2, . . .) and Ds = (As
1, A

s
2 −

1, As
3 − 2, . . .) satisfy

|Ds| + |Dp| − |Ds ∩ Dp| = k (47)

D.3. Computation of Unrestricted Damerau-Levenshtein Distance
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Algorithm 2 Computation of the unrestricted Damerau-Levenshtein distance be-
tween strings p and s

var C: array [0..|p|,0..|s|] of Integer
var CP: array [1..|Σ|] of Integer
var i′, j′, CS: Integer

for i := 0 to |p| do C[i, 0] := i
for j := 0 to |s| do C[0, j] := j

for i := 1 to |Σ| do CP [i] := 0

for i := 1 to |p| do begin
CS := 0
for j := 1 to |s| do begin

if p[i] = s[j] then d := 0 else d:= 1
C[i, j] := min(C[i − 1, j] + 1, C[i, j − 1] + 1, C[i − 1, j − 1] + d)

Comment CP [c] stores the largest index i′ < i such that p[i′] = c.
CS stores the largest index j′ < j such that s[j′] = p[i].

i′ := CP [s[j]]
j′ := CS
if i′ > 0 and j′ > 0 then begin

C[i, j] := min(C[i, j], C[i′ − 1, j′ − 1] + (i − i′) + (j − j′) − 1)
end
if p[i] = s[j] then CS := j

end
CP [p[i]] := i

end
output C[|p|, |s|]
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