
Off the Beaten Path: Let’s Replace Term-Based

Retrieval with k-NN Search

Leonid Boytsov, David Novak, Yury Malkov, Eric Nyberg

October 2016

Abstract

This is a slightly expanded version of our CIKM’2016 talk that presents
the eponymous paper. Note that is a only high-level summary and more
details can be obtained from our paper and code. The software, instruc-
tions, and bootstrapping scripts are published on GitHub.

1 Motivation

The talk is concerned with our ongoing effort to apply generic k-nearest-neighbor
(k-NN) search algorithms to textual retrieval. Our work is at the intersection of
natural language processing (NLP), information retrieval (IR), and k-nearest-
neighbor search (k-NN search). It is motivated by our belief that adhoc text
retrieval could and should benefit from using generic k-NN search algorithms.
When we discussed the idea of substituting the k-NN search for term-based re-
trieval with several colleagues, they opined that this approach would be horribly
[sic] slow. We demonstrate that this is not the case, which is one of the central
contributions of our paper.

A typical retrieval system relies on a filter-and-refine pipeline, which first
generates a list of candidate documents using a simple TF×IDF ranking func-
tion and applying more sophisticated similarity at later refinement steps. The
filtering step is, in fact, a form of k-NN search, where similarity is the inner
product between sparse query and document vectors. Unfortunately, if this
crude similarity fails to retrieve relevant documents at the filtering step, they
cannot be recovered at later refinements steps.

Many filtering errors stem from a vocabulary mismatch. As shown by Zhao
and Callan [8], there is a 50% chance that a query term will not appear in a
relevant document. Fixing this problem is hard, because, as shown by Furnas
and colleagues [3], there is a long tail of synonyms. Yet, only few of them can
be efficiently incorporated into query expansion.

Furthermore, it is not clear how to efficiently incorporate sophisticated sim-
ilarity features such as dense vector document representations (i.e., document
and word embeddings) directly into retrieval. Such representations already work

1

http://boytsov.info/pubs/cikm2016.pdf
https://github.com/oaqa/knn4qa/wiki/CIKM-2016

quite well for classification and collaborative filtering [2] and we expect them to
be useful in text retrieval too.

1.1 Hardness of k-NN Search

Unfortunately, k-NN search is a hard problem due to the curse of dimensionality,
which in many cases does not permit an exact and efficient k-NN search on
high-dimensional data. In rare cases, a structure of the search problem does
permit a reasonably efficient computational shortcut. For example, as pointed
out by James Allan, in the case of TF×IDF similarity and short queries, the
sparsity of the term-document matrix allows us to answer query efficiently using
inverted files. However, we think that the curse of dimensionality cannot be fully
removed and that computational shortcuts rarely exist. We can nevertheless
weaken the curse using the magic of approximation. Approximate search can
be substantially more efficient at the expense of missing some relevant answers.

To replace or complement term-based retrieval with k-NN search we need to
achieve two challenging objectives. First we need to design a simple similarity
that beats baselines such as BM25 by a good margin. Because textual data
sets are usually high-dimensional, we have to resort to approximate searching.
Therefore, the gains in accuracy achieved by employing a more sophisticated
model can be easily invalidated by the inaccuracy of the search procedure. To
avoid this degradation by approximation, we also need to implement efficient
search algorithms that are as accurate as possible.

1.2 Similarity Models for k-NN Search

After some experimentation, we selected the following two models, each of which
had a potential to alleviate the problem of the vocabulary mismatch. First, we
considered a sparse representation where we combine BM25 scores and log-
scores of IBM Model 1. There is prior work showing this combination to be
20% more effective than BM25 alone [6]. Second, we considered dense document
representations obtained by averaging individual word embeddings, which are
compared using the cosine similarity.

The appeal of word embeddings is twofold:

• They deliver state-of-the art performance in many NLP tasks (while bridg-
ing the vocabulary gap);

• There are several algorithms for efficient retrieval of dense vectors.

In the following, I briefly introduce IBM Model 1. I skip the description of
averaged word embeddings, because they are well-known. IBM Model 1 is a
statistical lexical translation model, which is learned from a parallel corpus. A
good example of a parallel corpus is a set of question answer pairs extracted from
a community QA website. Similar to Berger and Lafferty who pioneered this
approach in IR, we use Model 1 to quantify a strength of association between
query terms and terms from respective relevant documents.

2

Question Answer Answer Answer Answer

word word word word word

caffeine coffee 0.074 drink 0.051 tea 0.021 caffiene 0.018

latte milk 0.052 coffee 0.049 starbucks 0.043 espresso 0.021

oxygen o2 0.043 air 0.024 gas 0.018 carbon 0.018

contagious spread 0.024 person 0.022 infection 0.013 virus 0.013

likelihood likely 0.015 chance 0.015 chances 0.013 odds 0.013

animal animals 0.110 dog 0.037 dogs 0.019 cat 0.017

study studying 0.037 school 0.021 studies 0.018 exam 0.013

challenge like 0.016 challenges 0.015 think 0.012 all 0.010

fat weight 0.061 eat 0.027 lose 0.024 body 0.023

Table 1: Sample translation probabilities learned from Yahoo Answers

Let us look at the few sample associations learned from Yahoo Answers cor-
pus, which are presented in Table 1. The leftmost column shows question terms.
The remaining columns show associated answers with their respective transla-
tion probabilities. As we can see here, Model 1 can successfully learn various
morphological and semantic relationships including synonymy, meronymy, and
hypernymy. Look for example at row one. We can see that caffeine is associ-
ated with words coffee, drink, and tea, as well as with its incorrect spelling.
Except misspelling, these are all examples of meronymy, i.e., of a part-whole re-
lationship. Consider the second table row. Here, the word latte is, somewhat
unsurprisingly, associated with milk, coffee, starbucks, and espresso. The
pair of words latte and coffee is an example of hypernymy.

P (Q|D) =
∏
q∈Q

P (q|D)

P (q|D) = (1− λ)

[∑
d∈D

T (q|d)P (d|D)

]
+ λP (q|C)

(1)

Computing Model 1 scores involves two steps: retrieving translation proba-
bilities for all pairs of query and document terms and aggregating these proba-
bilities into a single score.

For completeness, we present IBM Model 1 formula in Eq. 1, where Q and D
denote query and answer document; q and d denote query and document terms;
and T (q|d) denote translation probabilities (which estimate the strength of term
associations). Note, however, that exact computation details are irrelevant for
our discussion. Yet, it is important to understand that retrieving all pairwise
probabilities is too expensive for k-NN search to be efficient. Thus, we use
simple algorithmic tricks (briefly outlined in the paper) to avoid doing so.

2 k-NN Search Algorithms

As mentioned previously, our second big challenge is to implement search al-
gorithms that answer queries with nearly 100% accuracy. In the beginning of

3

this project we had high expectations for a class of algorithms called neighbor-
hood or proximity graphs. In a proximity graph, data points are nodes and
sufficiently close points are connected by edges. A search procedure is a semi-
greedy traversal of the graph. In particular, we used a variant of the proximity
graph called SW-graph co-authored by Yury Malkov [4]. For our joint paper,
Yury proposed an algorithmic improvement as well as helped identify an inef-
ficiency in handling the priority queue. These contributions reduced retrieval
times by nearly an order of magnitude.

Proximity graphs are extremely efficient for high-dimensional Euclidean data
sets, where they can outperform both LSH algorithms and multi-tree approaches
with the single priority queue [5, 1]. In addition, we also found that proxim-
ity graphs work nearly as well for a number of non-metric and non-symmetric
distances such as KL-divergence [5] or Rényi divergence (unpublished experi-
ments). The fact that proximity graphs work for a variety of crazy distances
made us think that we have a unicorn method, which we could apply it to even
more complex similarities.

However, SW-graph worked well only for dense representations based on
averaged word embeddings, but not for similarities based on sparse represen-
tations. Our recent preliminary experiments show that it is possible to make
SW-graph work with BM25, but we do not know how to make SW-graph work
well for the combination of BM25 and Model 1.

Leonid also implemented a back up solution based on pivoting (with pivots
randomly selected from data points). This method was not terribly slow, but it
was not sufficiently fast either. Fortunately, at this point David Novak joined
the project and proposed a simple but effective way to generate pivots. He
demonstrated that this method was quite efficient for the cosine similarity and
Wikipedia sparse TF×IDF vectors. Leonid was able to reproduce David’s results
and successfully applied his technique to BM25 as well as to the combination of
BM25 and Model 1.

3 Experiments

Let us now talk about experiments. Our task is adhoc text retrieval. We use
two publicly available community QA data sets: Yahoo Answers and Stack
Overflow. We do not use all the answers, but only answers that are considered
best answers by the question asker or other community members. In that,
questions play the role of queries, while best answers are considered to be the
only relevant documents. Each collection is as a parallel corpus of question-
answer pairs, which allows us to train IBM Model 1. IBM Model 1 is trained
on a part of the collection that is not used for training, development, and/or
testing.

The main results are presented in Figure 2. Here we show efficiency-effec-
tiveness plots for two collections and three similarity models. One model, i.e.,
BM25 is a baseline mode. Efficiency (on the y-axis) is measured in milliseconds
per query. Note the log-scale of y-axis. Effectiveness (on the x-axis) is measured

4

brute-force BM25+Model1 NAPP BM25+Model1

brute-force BM25 NAPP BM25

brute-force Cosine avg. embed SW-graph Cosine avg. embed

Lucene BM25

Yahoo Answers Stack Overflow

0.16 0.18 0.2 0.22 0.24 0.26 0.28

102

103

104

Answer recall@100

Q
u
er
y
ti
m
e
(m

s)
(l
o
g
.
sc
a
le
)

0.1 0.15 0.2 0.25 0.3

102

103

104

Answer recall@100

Table 2: Efficiency-effectiveness Trade-Offs of k-NN Search (higher and to the
right is better)

as answer recall at rank 100. Lower and to the right is better.
In the case of sparse representations, we use BM25 as well BM25+Model1,

which are indexed using the pivoting method NAPP. In the case of dense repre-
sentations, we use the cosine similarity and averaged word embeddings, which
are indexed with SW-graph. Approximate k-NN search runs are represented
by diamonds. There are multiple runs corresponding to different similarities
and search parameters. Approximate k-NN search is compared against two
baselines:

• Exact brute force k-NN search, which is represented by pentagons;

• Lucene BM25, which is represented by red triangles. Lucene is a strong
baseline, which fares well against optimized C++ code, especially for dis-
junctive queries [7]. 1

1More exactly we do a bit of re-ranking of Lucene’s output to compensate for the deficiency
of Lucene’s BM25 implementation. See our blog post with details.

5

http://searchivarius.org/blog/accurate-bm25-similarity-lucene-follow

First we can see that exact brute-force k-NN search is, indeed, horribly slow,
but corresponding approximate runs take substantially shorter times without
losing much in accuracy. In that, SW-graph runs (see these orange diamonds
here and here) exhibit the least degradation due to approximation, but the
underlying similarity model is not effective. In other words, the averaged em-
beddings runs are not effective, but this is not a fault of k-NN search.

More importantly, these plots seem to support our conjecture that incor-
poration of sophisticated similarity into retrieval can be useful. Look at the
left pane: blue diamonds correspond to BM25; black diamonds correspond to
BM25 + Model 1. In both cases, the search method is NAPP. BM25 + Model 1
is computationally more expensive than BM25: The corresponding brute-force
k-NN search is, in fact, an order of magnitude slower! Yet, black diamond runs
are roughly as efficient as blue diamond runs, while being more effective. Look
at the right pane. Here, black diamond runs can outperform Lucene—which
uses a simpler BM25 similarity—in both accuracy and speed.

4 Discussion and conclusion

We have finally come to a conclusion and I want to discuss our positive and
negative results. First of all, generic k-NN search is not horribly slow. In fact,
it can be comparably efficient to Lucene, which is our practicality threshold.
Our efficient k-NN search relies on pivoting. In that, pivoting based on more
effective (but slower-to-compute) similarity can be more efficient than pivoting
based on a simpler and cheaper BM25 similarity. We believe that these results
support our main conclusions:

• Generic k-NN search can be efficient and accurate in a text retrieval task;

• It may be, indeed, beneficial to employ sophisticated similarity at an early
retrieval stage.

Thus, text retrieval can and should benefit from using generic k-NN search
algorithms.

Although Lucene is fast [7], we know that C++ code implementing a sim-
ilar algorithm is still faster. Unfortunately, we do not have an apple-to-apple
comparison results right now. Yet, we know that C++ code that does not
use compression and does not compute BM252 is nearly 2× fast compared to
Lucene. Likely, such a code would be about 30% faster compared to our fastest
black diamond runs (but 10% less effective). It remains to be seen if our method
can be further optimized.

It is a great pity but proximity graphs seem to have limitations. They work
great for a variety of crazy non-metric distance functions as well as for word
embeddings. Unfortunately, word embeddings are not effective on their own.

We also admit that we yet have no example of k-NN search finding lots
of additional documents compared to a filter-and-refine approach (based on

2because it simulates computation via inner product with precomputed vector values.

6

TF×IDF). Even though this is not shown in plots, a nearly effective solution
can be obtained by simply using a larger pool of candidate entries. This is not
related to the accuracy of k-NN search, because the same is true for exact brute
force search using BM25+Model 1. We hypothesize that the classic TF×IDF
search may be effective here for two reasons:

• Our collections are small;

• Long queries answered in a fully disjunctive mode are relatively unaffected
by the vocabulary mismatch, because there is a good chance that both
query and relevant documents share at least one common term.

In our work we explored three types of similarities: two are based on sparse
representations and two are based on dense ones. It does not mean that our
methods are limited to these similarities only. In contrast, we think that k-NN
search can work for a variety of complex similarities (going beyond bridging the
vocabulary gap) and data representations. It seems to us that sparse document
representations work well for adhoc search and are hard to beat in this domain.
We also know that dense representations work well for, collaborative filtering,
where sparse bag-of-words representations do not perform well [2]. If we can
substantially improve dense representations and build better similarity models
for them, the hybrid models may become viable in the future.

References

[1] E. Bernhardsson. Benchmarks of approximate nearest neighbor libraries
in python. https://github.com/erikbern/ann-benchmarks Using single-
thread results from June 2016.

[2] E. Bernhardsson. Collaborative filtering at spotify. NYC machine learn-
ing meetup. Jan 17, 2013. http://www.slideshare.net/erikbern/

collaborative-filtering-at-spotify-16182818 Last checked October
2016.

[3] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The vocabu-
lary problem in human-system communication. Commun. ACM, 30(11):964–
971, 1987.

[4] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov. Approximate
nearest neighbor algorithm based on navigable small world graphs. Inf.
Syst., 45:61–68, 2014.

[5] B. Naidan, L. Boytsov, and E. Nyberg. Permutation search methods are
efficient, yet faster search is possible. PVLDB, 8(12):1618–1629, 2015.

[6] M. Surdeanu, M. Ciaramita, and H. Zaragoza. Learning to rank answers
to non-factoid questions from web collections. Computational Linguistics,
37(2):351–383, 2011.

7

https://github.com/erikbern/ann-benchmarks
http://www.slideshare.net/erikbern/collaborative-filtering-at-spotify-16182818
http://www.slideshare.net/erikbern/collaborative-filtering-at-spotify-16182818

[7] S. Vigna. Quasi-succinct indices. In Proceedings of WSDM, pages 83–92.
ACM, 2013.

[8] L. Zhao and J. Callan. Term necessity prediction. In Proceedings of the 19th
ACM Conference on Information and Knowledge Management, CIKM 2010,
Toronto, Ontario, Canada, October 26-30, 2010, pages 259–268. ACM, 2010.

8

	Motivation
	Hardness of k-NN Search
	Similarity Models for k-NN Search

	k-NN Search Algorithms
	Experiments
	Discussion and conclusion

