
CMU Multiple-choice Question Answering System at
NTCIR-11 QA-Lab

Di Wang
diwang@cs.cmu.edu

Leonid Boytsov
srchvrs@cs.cmu.edu

Jun Araki
junaraki@cs.cmu.edu

Alkesh Patel
alkeshku@cmu.edu

Jeff Gee
jgee1@cs.cmu.edu

Zhengzhong Liu
liu@cs.cmu.edu

Eric Nyberg
ehn@cs.cmu.edu

Teruko Mitamura
teruko@cs.cmu.edu

Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA

ABSTRACT
We describe CMU’s UIMA-based modular automatic ques-
tion answering (QA) system. This system answers multiple-
choice English questions for the world history entrance exam.
Questions are preceded by short descriptions providing a his-
torical context. Given the context and question-specific in-
structions, we generate verifiable assertions for each answer
choice. These assertions are evaluated using several evidenc-
ing modules, which assign a plausibility score to each asser-
tion. These scores are then aggregated to produce the most
plausible answer choice. In the NTCIR-11 QALab evalua-
tions, our system achieved 51.6% accuracy on the training
set, 47.2% on Phase 1 testing set, and 34.1% on Phase 2
testing set.

Team Name
CMUQA

Subtasks
QA-Lab Center Exam (English)

Keywords
Question Answering, Fact Validation, Multiple-Choice Ques-
tion

1. INTRODUCTION
In the Center Exam task of the NTCIR-11 QALab, par-

ticipants need to develop a system that can automatically
answer multiple-choice questions for the world history en-
trance exam. History questions are selected from archives
of the the National Center Test for University Admissions in
Japan. The original questions are in Japanese, but our team
used an English translation provided by NTCIR-11 QA-Lab
organizers (in an XML format).

Most commonly, students are asked to choose a correct
statement with respect to given background information and
an underlined portion of the text. The other types of ques-
tions are: “fill in the blanks”, “choose the right combination
of correct and incorrect statements,” and “analyse an image
provided with the question”. Question types are explicitly
indicated in the input XML file.

To select a correct answer from multiple answer choices,
the system is supposed to leverage external knowledge sources
(such as historical Wikipedia articles) as well as contex-
tual information provided with the question. Participants
can use any textual or knowledge sources, but they should
not retrieve the actual answer keys by matching provided
questions against questions from the National Center Test
archives (the already provided answer keys can be used for
training). In that, Japanese task participants are given
Japanese high school textbooks on world history, which are
annotated with the world history ontology.

The rest of the paper is organized as follows: Sections 2
through 4 describe the overall system architecture as well
as individual components. Experimental results and error
analysis are prevesnted in Section 5. In Section 6 we con-
clude the paper with the discussion of future work.

2. SYSTEM ARCHITECTURE
Our modular QA system is implemented in the form of

an NLP pipeline on top of the UIMA framework1. There is
a special component that reads an input XML file and gen-
erates an analysis object that “travels” from one processing
module to another over a virtual conveyor belt (hence, the
name pipeline).

A modular conveyor approach–readily supported by UIMA–
is convenient for experimentation and rapid development,
because it simplifies the addition of new processing modules
and replacement of existing modules by compatible ones.

In particular, given a short historical description and ques-
tion instructions, we generate verifiable assertions for each
answer choice, which can be scored by multiple evidencing
modules. To select the most plausible answer choice, we
need to aggregate the scores. Again, multiple aggregation
approaches can be used.

The major pipeline modules (in the order they process
input data) are:

Collection Reader parses the input XML with questions
and optionally an input XML file with gold standard data.
The Collection Reader extracts short historical descriptions,
generic and question-specific instructions, as well as answer
choices. This information is then stored in the newly created

1http://uima.apache.org/
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analysis object (represented by a UIMA CAS object).
Assertion Generator reads question-related informa-

tion provided by the Collection Reader. It then generates
an assertion, which can be validated by downstream pro-
cessing modules. Each answer choice can be associated with
one or more assertions. There are manually implemented
assertion-generating procedures for most common question
types.

An assertion typically contains an answer-choice text con-
catenated with substrings extracted from the question-specific
context. It is possible, e.g., when students are asked to fill
in the blanks, for a question to reference portions of the
underlying historical description. In such a case, these ref-
erences are resolved by inserting referenced portions of the
description into the text of the assertion.

Evidencers assign a plausibility score to each assertion.
The goal is to ensure that correct assertions generally have
higher scores than incorrect ones. We implemented a di-
verse pool of evidencing components, which we describe in
Section 3.

Answer Selector aggregates evidencing scores to pro-
duce the final score for each answer choice. If we are asked
to select a correct answer, the answer choice with the high-
est final score is selected. Otherwise, we select an answer
associated with the lowest final score. We employed several
learning-to-rank and voting approaches to evidence aggre-
gation, which we describe in Section 4.

Evaluator “consumes” pipeline’s output, computes per-
formance metrics, and (optionally) submits the output to an
evaluation web service. The evaluation web service persists
experimental data and metadata from our UIMA pipeline,
making them easily accessible through the web user inter-
face, and provides an interface to carry out an error and
overlap analysis. Last but not least, this evaluation web
service supports a leave-one-out cross-validation to evaluate
performance of learning-to-rank based answer selectors.

To facilitate future collaborative efforts in the world his-
tory exam task, we open sourced our baseline system2. It
includes a type system, a collection reader, a document re-
trieval based evidencer, and an evaluator which can also
serve as a modular software platform for evaluating compo-
nents’ performance.

3. EVIDENCING MODULES

3.1 Semi-Phrasal Queries using Wikipedia,
Gutenberg Collection, and Wikibooks

In this approach, we indexed mostly complete documents
and ran semi-phrasal queries. Such queries do not enforce
a strict phrasal match but rather boost scores of documents
where query words appear close to each other. More specif-
ically we used the following heuristics, which were imple-
mented using the ExtendedDisMax parser of the SOLR
search engine:

• Scores of the documents were boosted if query words
appeared within a text window of a given size. The
size of the window was proportional to the number of
query words. We found that multiplying the number
of query words by 1.5 or 2 results in good retrieval
quality.

2https://github.com/oaqa/ntcir-qalab-cmu-baseline

• Rather than relying on a score of a single top-ranked
document, we computed a decaying sum (as done by
Gondek et al. [4]). In the decaying sum, a weight of the
document score is an exponentially decreasing function

of a document rank (in our case, 2−rank).

• We run several queries with varying degrees of fuzzi-
ness. The strictest query required that all query words
were present in a document, the next strictest required
only 80% of them to be present, and so on. In the
simple-sum approach, scores obtained for different de-
grees of fuzziness were summed up to obtain an ulti-
mate assertion score. The scoring schema was BM25.

Our approach relies on several parameters, which were
manually tuned using two different test collection: the orig-
inal test collection provided by NTCIR organizers and the
collection created by us. To prevent overfitting, we tried to
select parameters that worked well for both collections. The
collection created by our team contained 200 questions and
was based on the materials of the Regents Exam Preparation
Center (see Section 5.1.2 for details).

Overall, we indexed three collections using SOLR:

• A subset of historical Wikipedia documents (about 400
thousand documents);

• A subset of historical books from the Wikibooks 3 col-
lection (158 documents);

• A subset of historical books from the Gutenberg col-
lection (about 23 thousand paragraphs from about 500
books), each of which was split into paragraphs.

A simple rule-based classifier was used to select histor-
ical articles. Namely, we checked if the list of categories
contained one of the manually selected keywords, mostly
”history” and ”historical”. Article text contains Wikipedia
markup tags, most of which were deleted using simple reg-
ular expressions. After basic cleanup, we indexed complete
documents.

In the case of the Gutenberg collection, the list of books
was created manually. To find history-related books, we
used site-restricted Google-search and browsing of the Guten-
berg book catalog. For example, we used ”history”, ”history
textbook”, ”modern history”, ”history of China”, and ”his-
tory of Japan”.

3.2 Passage Ranking using Wikipedia
In this evidencer, we have a document and a passage in-

dex. Scores are obtaind in three stages : document retrieval,
passage retrieval, and passage reranking. Both the docu-
ment and passage retrieval system employ the TF-IDF ap-
proach [9].

3.2.1 Document Retrieval
The document index contains all Wikipedia articles that

are not redirects. These articles are indexed using Apache
Solr4. To maximize recall, we create queries by OR-ing all
assertion words and retrieve at most Nd (method parameter)
documents.

3https://en.wikibooks.org
4http://lucene.apache.org/solr/
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3.2.2 Passage Retrieval
Retrieved documents are divided into sentences using Stan-

ford CoreNLP5. Then, a sliding window approach (Ns sen-
tences make one passage) is used to combine sentences into
passages [7, 2]. Next, passages are added to the passage
index and passages with the 10 highest scores are retrieved.

On 2009 data set, the best separation of scores between
true and false assertions was achieved for Ns = 4. Hence,
we used Ns = 4 for all other data sets as well.

3.2.3 Passage Reranking
Following the idea of [1], we hypothesize that effectiveness

of the passage retrieval, which relies on a bag-of-words model
(simBOW ), can be improved by combining the bag-of-words
model with an annotation similarity model (simANN ). The
latter model relies on computation of the overlap between
passages and assertions with respect to n-grams and named
entities.

We considered the following three options to compute the
n-gram overlap (NO) between assertion a and passage p:

simNO1(a, p) =
|ngrams(a) ∩ ngrams(p)|

|ngrams(p)|

simNO2(a, p) = max
s∈p

|ngrams(a) ∩ ngrams(s)|
|ngrams(s)|

simNO3(a, p) = max
wa∈p

|ngrams(a) ∩ ngrams(wa)|
|ngrams(wa)|

where ngrams(t) denotes a set of n-grams in text t; s denotes
a passage sentence; wa denotes a text window containing the
same number of tokens as the assertion a. In that, we use
only unigrams, bigrams, and trigrams.

Similarly, we formulate the following three options to com-
pute the named entity overlap (NEO) between assertion a
and passage p:

simNEO1(a, p) =
|NEs(a) ∩NEs(p)|

|NEs(p)|

simNEO2(a, p) = max
s∈p

|NEs(a) ∩NEs(s)|
|NEs(s)|

simNEO3(a, p) = max
wa∈p

|NEs(a) ∩NEs(wa)|
|NEs(wa)|

where NEs(t) denotes a set of named entities found in text t.
Entities were extracted using Stanford CoreNLP.

For NO, the combined similarity score between a and p is
equal to:

score(a, p) = simBOW (s, p)× simANN (a, p)

= TF-IDF(a, p)× (1 + α simNO(a, p))

where α is a weight of the n-gram similarity model. The
same approach was used to combine the bag-of-words and
the NEO similarity scores.

For the training set, we found that an optimal perfor-
mance was achieved when we used only simNO3 with α = 0.1.
This option was also used for the final submission.

3.3 Source and Query Expansion
To mitigate the mismatch between terms in assertions and

text collections, we use a combination of two strategies: a
source/corpus and a query expansion. In particular, we treat

5http://nlp.stanford.edu/software/corenlp.shtml

assertions as queries and generate all possible query expan-
sions as described below in Section 3.3.2. Then we obtain
their scores as well as the score of the original assertion using
the retrieval method described in Section 3.1. Additionally,
we obtain the score of the original assertion in the expanded
corpus.

If the difference between the score for the original asser-
tion and the highest score of an expanded assertion is posi-
tive, this difference is used to boost assertion’s original score.
However, if this difference is negative and the assertion score
for the expanded corpus is smaller than assertion’s original
score (for the original corpus), then this difference is used to
decrease the original score.

3.3.1 Source Expansion
Source expansion [14] is a variant of multi-document sum-

marization. It is a simple, yet effective, technique to auto-
matically expand documents belonging to one corpus using
text snippets (nuggets) from another corpus. Source expan-
sion includes the following steps:

1. Given a document from the original collection (called
a seed document), construct a query using keywords
from the seed document (e.g., using title keywords);

2. Use this query to retrieve a list of documents from a
large corpus;

3. Extract text passages (also called nuggets) from the
retrieved documents;

4. Compute similarity scores between the seed documents
and retrieved nuggets (using various features such as
term overlap) and discard text nuggets with low scores;

5. Append nuggets to the seed documents (similar or
identical nuggets may be eliminated at this stage).

The quality of the corpus can greatly affect performance of
a retrieval-based QA system. For example, retrieval using
a small domain-specific corpus may have low recall. Em-
ploying a larger corpus may improve recall at the expense
of a substantial decrease in precision. Expanding this small
domain-specific corpus using the larger one, may result in a
more balanced text collection that provides a better recall-
precision trade off than either of the corpora. In particular,
in the IBM Watson QA system, the use of source expansion
alone lead to a substantial improvement in answer accuracy
(3.7% in the end-to-end pipeline).

In our system, Wikipedia articles were expanded by con-
structing queries from assertion text and submitting these
queries to Bing. For example, given an incorrect assertion
“Yan Zhenqing is a calligrapher representative of the Song
period” we obtained the following nuggets:

• He is the best calligrapher in the Tang Dynasty, bar
none;

• Yan Zhenqing was a leading Chinese calligrapher and
a loyal governor of the Tang Dynasty;

• Yan Zhenqing was a prominent Chinese calligrapher of
the Tang Dynasty, and remains one of the most famous
and emulated calligraphers today;
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3.3.2 Query Expansion
In our system, query expansion consists in identifying as-

sertion entities and replacing them with similar ones. For
example, given the assertion “Yan Zhenqing is a calligrapher
representative of the Song period”, we generate expanded as-
sertions such as “Yan Zhenqing is a calligrapher representa-
tive of the Tang period” and “Yan Zhenqing is a calligrapher
representative of the Qing period”.

To generate such neighbor assertions, we first identify en-
tities using DBPedia Spotlight [10]. In that, entities with
confidence scores smaller than 0.5 are discarded. For each
entity, we generate a new assertion by replacing this en-
tity with the most similar neighbor entity. For example,
for the entity Tang Dynasty the two nearest neighbors are
Song Dynasty and Sui Dynasty.

To find similar entities, we employ already existing vector
space mappings for 1.4 million Freebase entities 6. The map-
pings were originally created using word2vec[12]. Closeness
of vectors is measured using the cosine similarity.

DBPedia and Freebase cover somewhat different subsets
of Wikipedia entities and use different identifiers to denote
the same entity. Yet, both data sets have a good overlap
and there is a publicly available mapping between DBPedia
and Freebase identifiers7.

3.4 Temporal Scorer

3.4.1 Types of Temporal Assertions
In many multiple-choice exams, candidate answers are

constructed to be as deceptive as possible and seem to be
all factually correct upon the first review. However, upon
closer investigation, it is often possible to identify temporal
clues that can be used to discard these incorrect answers.

For example, the statement “Columbus discovered Amer-
ica in the 16th century” is incorrect because this discovery
happened a century earlier. However, the assertion “Colum-
bus discovered America” alone (obtained by removing tem-
poral information) is a valid statement. Therefore, compar-
ing the actual discovery time against the time specified in
the assertion is crucial to invalidating the original incorrect
statement.

In this section, we describe a simple scoring pipeline to
evaluate factual assertions based on keywords as well as on
the temporal context. There are three main ways in which
a statement can be constrained by time:

• A time period or date is explicitly specified;

• A time period is indicated via a reference to a historical
event, such as “The Bolshevik Revolution”.

• There is no temporal reference specified in a statement.
However, temporal logic can be applied to the named
entities in the statement.

Statements from the third category may indicate relations
among multiple historical events. For example, a statement,
“During the first World War, Abraham Lincoln instructed
. . . ” can be determined to be incorrect because World War
I corresponds to a period of time in which Abraham Lincoln
was not able to “instruct” (he was deceased).

6https://code.google.com/p/word2vec/
7http://wiki.dbpedia.org/Downloads2014#
links-to-freebase

Applying temporal logic to resolve interactions between
historical entities requires a fundamental understanding of
what type of relations infer what types of temporal con-
straints. For example, “Abraham Lincoln addressed Bar-
rack Obama,” contains an overlapping temporal constraint,
where Lincoln and Obama must co-exist in the same time pe-
riod. However, “Abraham Lincoln inspired Barrack Obama”
is another case of overlapping historical entities that implies
a different, more relaxed temporal constraint, in which Lin-
coln can additionally precede Obama.

In this work we do not attempt to account for all the com-
plex interactions among temporal constraints, and instead,
rely on heuristics.

3.4.2 Pipeline Architecture
In our experiments, we use a passage-based Wikipedia in-

dex. A passage length is two sentences. Passages are created
using a standard sliding-window approach described in Sec-
tion 3.2.2.

An assertion score is computed in three steps:

• Extraction of historical entities from the assertion text
using DBPedia Spotlight [10].

• Scope-constrained passage retrieval.

• Filtering based on temporal constraints.

In the first step we identify historical entities contained in
the assertion text. These entities define titles of potentially
relevant Wikipedia pages and, therefore, the scope of the
passage search.

After the search scope is defined, we retrieve K passages
with the highest cosine similarity scores. These scores are
computed between term frequency vectors for the assertion
and the passage texts (terms are stemmed).

The scope-limiting heuristics of the passage retrieval is
based on the assumption that the most important informa-
tion about a particular historical figure/event is consolidated
in its main Wikipedia page. For example, we assume that
the main Wikipedia page for Abraham Lincoln includes all
the (important) historical facts about Abraham Lincoln that
other Wikipedia pages may provide.

Passages obtained in the previous steps undergo addi-
tional filtering based on how well they satisfy temporal con-
straints. To this end, we first identify all explicit temporal
references (using the SUTime library [3]) and convert them
into temporal constraints. For example, if an assertion be-
gins with “From the 16th century until the 17th century. . . ”,
we restrict dates to be in the range from 1500-01-01 to 1699-
12-31. Eventually, we keep only passages that satisfy at least
one temporal constraint and discard everything else.

3.5 Semantic Similarity based on Wikipedia
graph

This scorer relies on a bag-of-entities model to represent
assertions and context information. For example, the asser-
tion “Ouyang Xiu and Su Shi are writers representative
of the Tang period” is associted with the following bag-of-
entities:

{Ouyang Xiu, Su Shi, Tang period.}
This assertion is incorrect because the entitiy “Ouyang

Xiu” is not related to the Tang period and is, therefore,
only weakly related to the other entities in this example. In
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contrast, if an assertion is correct, we expect entities to be
semantically related to each other [5].

To compute similarity, we use a graph of Wikipedia en-
tities, in which entities are nodes. Each node, therefore, is
represented by a Wikipedia article. If there is a hyperlink
from article A to article B or vice versa, the graph contains
an undirected edge connecting A and B. A weight of this
edge is equal to the overall number of hyperlinks from A to
B and from B to A.

A common assumption is that “connectedness” of graph
nodes is a good proxy for semantic similarity. More specifi-
cally, we expect that it takes fewer edges with larger weights
to connect similar entities than dissimilar ones.

To quantify node similarity, we use the Personalized PageR-
ank [6]. The classic PageRank [13] values are computed as a
stationary distribution of the following random walk: A user
either teleports to a randomly selected node with the proba-
bility α (in our experiments α = 0.85), or follows a randomly
chosen outgoing link with the probability (1− α)/N , where
N is the number of outgoing links.

The personalized PageRank differs only in that the surfer
always teleports to the same seed node rather than to a
randomly chosen arbitrary one. Note that in our case, the
graph is undirected, i.e., all edges are considered to be out-
going links. In that, a probability to randomly follow an
outgoing link is proportional to the normalized weight of
the corresponding edge.

Given a context and an assertion, we first build an entity
subgraph containing only entities from the assertion and the
context. For each entity present in the assertion, we then
run the personalized PageRank algorithm using this entity
as a seed node. Next, a score of the entity is computed as
a weighted sum of the average, minimum, and maximum
PageRank value over subgraph entities. Finally, we average
these scores over all assertion entities to obtain the over-
all assertion score. For questions without the context, an
assertion score is set to zero.

4. AGGREGATING EVIDENCING SCORES
AND SELECTING ANSWER

Even though individual evidencing components are not
perfect, it may be possible to build a better system by com-
bining them. One straightforward approach would be to
normalize evidencing scores and apply point-wise learning-
to-rank methods. However, scores from retrieval-based ev-
idencing component are query-specific. For example, as-
sertions with many words tend to generate larger retrieval
scores than short assertions containing only a few words.
Thus, it is hard to normalize scores properly. This is exac-
erbated by the fact our training data is scarce. However, we
discovered two general approaches that can effectively com-
bine scores and improve system performance: voting and
list-wise learning-to-rank.

4.1 Weighted Voting
A simple voting scheme selects an answer choice that is

supported by the largest number of evidencing components.
In a weighted voting scheme, each component has a voting
weight. When an answer is selected by a component, we
add the voting weight of this component to the score of the
answer. In the end, we select the answer with the largest
total score.

Voting can act as a boosting algorithm. It can be used
if evidencers generate answers without providing confidence
scores and, consequently, one cannot use more sophisticated
boosting methods. Consider an example of three compo-
nents, one of which has a superior performance. A combina-
tion approach (which we denote as 3Voters) can rely on the
following heuristic: use the answer selected by the strongest
component, unless the two weaker components both agree
on some other answer choice. A voting schema that imple-
ments this algorithm is the one where the strongest voter has
weight 1.5, while the two weaker voters each gets a weight
one.

Imagine that (1) n+ is the number of questions when the
strongest component is wrong, but the weaker components
are jointly correct; (2) n− is the number of questions when
the strongest component is correct, but the weaker compo-
nents are jointly wrong. If n+ > n− we can hope that on
the previously unseen set the described combination of three
evidencers will perform better than any evidencer separately
(especially if the query sample is large). Thus, we can use
the results of the overlap analysis to create a weighted vot-
ing scheme that has a better average performance than any
of the voters alone.

More generally, we can create a voting scheme that max-
imizes accuracy on the training data. To this end, we can
use a grid search. When there are a lot of components, a
grid search can be expensive and other weight-selection ap-
proaches should be used [8, 15].

4.2 Point-Wise Learning-to-Rank
To use a standard classifier, we reduce an answer-selection

problem to the problem of binary classification by training
a separate classifier for each possible answer choice k. The
feature vector is binary: the i-element is equal to one if the
evidencer i selects answer k (and is zero otherwise).

At test time, we run the classifier for each answer choice,
and obtain classification confidence. If we are asked to select
a correct answer choice, an answer choice corresponding to
the highest confidence value is selected. Otherwise, we select
the answer choice with the lowest confidence value. Such a
classifier represents a point-wise learning method.

We evaluated performance of several standard Weka algo-
rithms, including AdaBoost, Logistic Model Trees (LMT),
Logistic Regression, LogitBoost, Random Forest, and linear
SVM using leave-one-out cross validation. Logistic regres-
sion performed best and we used for our official submissions
(we denote this method as LogisticRegression).

4.3 List-Wise Learning-to-Rank
We employ a list-wise learning-to-rank method, where per-

formance is tuned using the classic coordinate ascent. It is
implemented as a part of the RankLib library8. We use this
algorithm to optimize parameters of a linear ranking model
(the overall score is a weighted combination of confidence
scores produced by individual evidencers, the answer choice
with the largest overall score wins). This method is denoted
as CoordAscent.

The optimization algorithm iteratively carries out a series
of one dimensional searches. In each iteration, it varies one
parameter (to optimize the target function) while keeping
other parameters fixed. Although this method may con-

8http://sourceforge.net/p/lemur/wiki/RankLib/
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Table 1: Summary of question types in the training set

Question Type Count

True/false statement 107

Fill-in-the blanks 31

Combination of true/false statements 6

Image analysis 7

Chronological ordering 2

Total 153

verge slowly, it directly optimizes the objective function
(such as the classification error), rather than a surrogate dif-
ferentiable loss function that only approximates (or upper-
bounds) the true objective function.

Metzler and Croft showed that in the context of informa-
tion retrieval this simple method outperforms other learning
methods [11]. We hypothesize that coordinate ascent is es-
pecially useful when training data is scarce.

5. EXPERIMENTS

5.1 Datasets
Our main data set was provided by NTCIR-11 organizers.

Additionally, we created another set of questions using his-
tory quizzes freely available online. Below, we describe both
data sets in detail.

5.1.1 Center Exam Training Dataset
This data set–provided by NTCIR-11 QA-Lab–contains

exam questions and respective answer keys for the Central
Entrance Exam that took place in 1997, 2001, 2005, and
2009. Overall, there are 153 questions of five types (see
Table 1). Two questions were ignored, because organizers
did not provide answer keys. Most commonly, students are
asked to identify either one correct or one incorrect state-
ment. The next most frequent question is fill-in-the-blanks.
We can generate assertions for both types of questions. How-
ever, this is not possible for image analysis questions. Ad-
ditionally, assertions were not generated for chronological
ordering questions as well as for questions without answer
keys. Thus, our system only generated valid assertions for
143 questions.

5.1.2 PREP: Regents Exam Preparation Center Data
The PREP collection–compiled by our team–has 200 ques-

tions. It is based on the materials of the Regents Exam
Preparation Center (see Section 5.1 for details) 9 By design,
all these questions are simple assertions, i.e., there is no ad-
ditional context. We had to edit and cull out some of the
questions to ensure that they represent simple assertions.

Consider, for example, a question that asks about the sim-
ilarities between the Imperial Russia and the Japan during
the Meji restoration period. Unless there is a text with a dis-
cussion on this topic (explicit comparison between Russian
and Japan during given periods), it is not possible to answer
such a question using a simple retrieval-based method.

9http://www.regentsprep.org/

Table 2: Methods’ performance on the training set

Method Accuracy

AlwaysFirst 0.258

SimpleWikipediaSubset 0.371

SemiPhrasal (Wikipedia) 0.430

SemiPhrasal (Wikibooks) 0.225

SemiPhrasal (Gutenberg) 0.318

PassageRanking 0.444

SourceExpansion 0.444

Temporal 0.397

SemanticGraph 0.385

3Voters 0.464

LogisticRegression 0.503

CoordAscent 0.516

Note: accuracy is computed for 151 questions with answer
keys.

Apart from removing or editing questions that are not
simple assertions, no further effort was made to select ques-
tions in a way that would deliberately decrease or increase
performance of our system.

5.2 Baselines
Two simple evidencing scorers are used as baselines:

• AlwaysFirst is a method that always selects the first
answer. Because most questions have four answer choices
where a correct choice is essentially random, this base-
line should have the accuracy close to 25%.

• SimpleWikipediaSubset relies on a small subset of his-
torical articles filtered from a Wikipedia XML dump
(11 thousand articles). The retrieval algorithm uses as-
sertions as fully disjunctive queries (using the default
scoring method of SOLR).

5.3 Results
In Section 3, we presented several evidencing approaches

to guess the right answer choice. We evaluated performance
of each individual component as well as performance of sev-
eral aggregating approaches described in Section 4. Results
are summarized in Table 2.

On the Center Exam training data set, all methods out-
perform the baselines. There are individual evidencing com-
ponents that can correctly answer up to 44.4% of all ques-
tions. An even higher accuracy (more than 50%) can be
achieved by aggregating evidencing components.

We also evaluated performance on the PREP data set.
All components performed slightly worse compared to the
Center Exam data set. This is a somewhat surprising re-
sult, because we expected our methods to perform better
on simple assertions. However, they may have also bene-
fited from context information, which is present only in the
Center Exam data set, but not in PREP.
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Table 3: Methods’ performance in the official evaluation

CMUQA EN Run ID (Method) Accuracy

Phase 1 Phase 2

FA_01 (CoordAscent) 0.472 0.317

FA_02 (LogisticWeighted) 0.444 0.341

FA_03 (3Voters) 0.417 0.292

Table 3 shows the accuracy of official runs submitted
by our team. The official evaluation had two phases, and,
for both of them, we achieved the highest score among En-
glish subtask participants. When comparing English and
Japanese submissions, we ranked third in phase one. In
phase two, we ranked sixth (out of ten participants). How-
ever, it is important to note that English and Japanese sub-
task cannot be directly compared for two reasons:

1. Japanese participants had access to high school text-
books on world history, which were annotated with the
world history ontology, while English subtask partici-
pants had to rely on Wikipedia or other resources that
they had to collect on their own;

2. There could have been noise introduced during trans-
lation from Japanese to English.

5.4 Error Analysis

5.5 Assertion Generation
Performance of the assertion generator greatly affects per-

formance of downstream evidencing components. Generat-
ing a meaningful verifiable assertion is a complex natural
language generation task. Hence, we resort to simple heuris-
tics and mostly concatenate an assertion text with question-
specific instructions. Oftentimes this procedure generates
a botched text that is not only nonsensical from a human
perspective, but also not amenable to NLP tools. Because
few of our assertions contained proper English sentences, we
used only simple retrieval methods for assertion verification.
One good example is Question 3 in 1997 data set (see Fig-
ure 1).

Quite often, an assertion text contains referential personal
pronouns. We did not try to replace these pronouns. As
a result, many of generated assertions are not sufficiently
specific. For example, in Question 19 from 2001 data set,
we generate the following non-discriminating assertions:

1. It implemented the marshall plan. economic and fi-
nancial aid;

2. It implemented the dawes plan. economic and financial
aid;

3. It issued the hoover moratorium. economic and finan-
cial aid;

4. It implemented the young plan. economic and financial
aid.

We found 13 questions where better assertions could have
been generated if references were resolved properly.

Context: “many countries not only in Europe, but also
in Asia, Africa, and America became involved in the
war for various reasons, so it truly was a world war, as
the name suggests.”

Instruction: “In regard to the underlined portion
(3), from (1)-(4) below, choose the one correct option
that is the name of a country that participated in the
war on the allied side.”

Choices:
(1) Switzerland (2) Italy (3) Belgium (4) Bulgaria

Generated Assertion for choice (1): “of country
participated war on allied side many countries not only
in Europe, but also in Asia, Africa, and America be-
came involved in the war for various reasons, so it truly
was a world war, as the name suggests. Switzerland”

Better Assertion: “Switzerland participated in
a world war on the allied side.”

Figure 1: Question 3 in 1997 data set

5.6 Retrieval-Based Validation
Our evidencing algorithms heavily rely on retrieval scores,

which depend on the frequency and proximity of assertion
terms in a document. Even though these scores are de-
cent predictors of assertion correctness–the accuracy can be
as high as 40%–they ignore complex syntactic and seman-
tic phenomena. Retrieval-based evidencer failures are often
an artifact of a specific weighting algorithm. In particular,
longer assertions or assertions that have many terms with
larger IDF values tend to generate larger scores regardless
of their correctness.

Figure 2 shows Question 11 from 1997 data set. The cor-
rect answer choice is four, but both the Wikipedia-based
semi-phrasal retrieval component (Section 3.1) and the pas-
sage retrieval component (Section 3.2) generate a substan-
tially higher score for the answer choice three. The an-
swer choice three is, however, incorrect, because the first
Oil Shock was due to 1973 oil embargo and the second one
was due to the decreased oil output in 1979. In that, the
assertion for the third answer choice has three extra words,
which is one of the reasons why it has a higher score. It
may be possible to improve the accuracy by taking asser-
tion lengths into account, especially we have more training
data, but we have not been able to do this yet.

5.7 Entity Detection
The temporal scorer 3.4 carries out a scope-constraint

search, where scope is defined as a subset of Wikipedia arti-
cles whose names can be found in an assertion text. Entities
are extracted using DBPedia Spotlight [10]. In that, we
could find cases where limiting the scope of the retrieval af-
fects our results. Consider for example Question 37 in 1997
data set:

Correct Candidate Answer: “Ignatius of Loyola formed
the Society of Jesus in 1534, and sought to restore Catholic
influence”
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Context: . . . Moreover, in order to create peace, not
only military factors, but also (9) complex problems
such as economic factor came to be considered.

From 1-4 below, choose the one sentence that is
correct in regard to the underlined portion (9):
1) The European Economic Community (EEC) pro-
moted economic integration focused on the UK.
2) The North-South divide is a term that indicates
the differences between the United States of America
and the Soviet Union in terms of their political and
economic systems.
3) The oil crises (Oil Shock) occurred because of a
reduction in the price of crude oil and oversupply by
the Arab oil-producing countries.
4) Asia saw the emergence of the newly-industrializing
economies (NIES), which achieved rapid economic
growth.

Figure 2: Question 11 in 1997 data set

Ideal Evidence Pages: “Ignatius of Loyola” and “Soci-
ety of Jesus”.

However, for a chosen confidence threshold, the only entity
detected by DBPedia Spotlight was “Jesus”.

6. CONCLUSIONS AND FUTURE WORK
We have developed a UIMA based question answering sys-

tem to automatically answer multiple-choice questions for
the entrance exam in world history. Our system is a modu-
lar software platform that can be used for future evaluations.
The system includes assertion-validation components, whose
combination was able to correctly answer 44% of questions
in Phase 1 and 34% of questions in Phase 2. Our best sys-
tems were substantially better than baselines.

We believe that further improvements can be achieved by
employing the following:

• Standardization - We need to be able to detect ref-
erences to historical events in text and represent the
correspdong events in a standard format. This format
should allow us not only to establish equivalence of
differently represented events, but also to verify if an
event happened within a specified time frame. Such a
standardization may require some external knowledge-
bases such as DBPedia.

• Coreference Resolution and Disambiguation - Stan-
dardization often requires coreference resolution, be-
cause historical events are seldom referenced using their
complete names. For example, in the Wikipedia ar-
ticle “Abraham Lincoln”, “the war” often refers the
Civil War. Nor are these short names unique. This
is the common issue with revolutions (“Bolshevik Rev-
olution” vs. “October Revolution”) and wars (“World
War II”, “Second World War”).

• Implicit Temporal Reference Resolution - Standardiza-
tion requires handling of implicit temporal references,
which can be considered a special case of coreference
resolution.
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