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ABSTRACT
We evaluate statistical inference procedures for small-scale
IR experiments that involve multiple comparisons against
the baseline. These procedures adjust for multiple compar-
isons by ensuring that the probability of observing at least
one false positive in the experiment is below a given thresh-
old. We use only publicly available test collections and make
our software available for download. In particular, we em-
ploy the TREC runs and runs constructed from the Mi-
crosoft learning-to-rank (MSLR) data set. Our focus is on
non-parametric statistical procedures that include the Holm-
Bonferroni adjustment of the permutation test p-values, the
MaxT permutation test, and the permutation-based closed
testing. In TREC-based simulations, these procedures re-
tain from 66% to 92% of individually significant results (i.e.,
those obtained without taking other comparisons into ac-
count). Similar retention rates are observed in the MSLR
simulations. For the largest evaluated query set size (i.e.,
6400), procedures that adjust for multiplicity find at most
5% fewer true differences compared to unadjusted tests. At
the same time, unadjusted tests produce many more false
positives.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Performance Evaluation

General Terms
Experimentation

Keywords
Statistical significance, multiple comparisons, t-test, MaxT,
permutation test, randomization test, Holm-Bonferroni.
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1. INTRODUCTION

1.1 Description of the Problem
Multiple comparisons/testing is a fundamental experimen-

tal issue that arises when a certain hypothesis is being re-
peatedly tested in different settings. For example, a re-
searcher proposes a new retrieval algorithm and verifies its
effectiveness against a baseline. In reality, this method is
equivalent to the baseline, but, after exhaustive testing with
different collections and parameter settings, he observes a
statistically significant improvement, which has happened
by chance. Most false positives arising from multiple test-
ing can be eliminated by considering a family of tests as a
whole and requiring stronger evidence, i.e., smaller p-values,
in each test. This approach is commonly referred to as an
adjustment for multiple comparisons (testing).

The multiple comparisons issue received a lot of atten-
tion in a bio-medical research. In clinical trials, the cost
of making a wrong conclusion is high. Thus, the US Food
and Drug Administration strongly recommends to employ
adjustments for multiple comparisons and requires a justi-
fication if multiplicity adjustments are not performed [1].
In contrast, in IR experiments, multiplicity issues are rarely
taken into account. Yet, there is a non-negligible cost related
to (1) human effort in reproducing experimental results, (2)
computational effort related to aggregating results from sev-
eral retrieval methods. These efforts are wasted on methods
whose improvement over the baseline was observed due to
spurious, i.e., random effects. This is why we believe that
the IR community should also adopt the practice of report-
ing corrected p-values.

How do we define a family of tests where p-values should
be adjusted for multiple comparisons? It turns out that the
choice of the family is very subjective [6, 33]. Westfall and
Young state that

. . . there can be no universal agreement: statis-
ticians have argued back and forth (sometimes
vehemently) over this issue, often arriving at dra-
matically different conclusions [33].

They note, however, that there is more agreement on ad-
justing p-values in a single experiment. This is especially
pertinent when results are summarized in a single conclu-
sion [2]. For example, the researcher may compare 10 meth-
ods against a baseline, adjust p-values, and state that only
3 differences are jointly significant.

In our work we adopt this point of view and focus on
adjustments that provide a strong control of a family-wise



error rate (FWER) at a significance level α. In other words,
the probability of observing a false positive among all tests
is at most α. We also limit our attention to the case when
a small number of methods are compared against a single
baseline. This is a common scenario in the TREC setting,
where a group submits 2-3 official runs that are evaluated by
TREC organizers. Additionally, the group may evaluate sev-
eral unofficial runs on their own (using relevance judgements
produced by TREC assessors). There are several other ap-
proaches to deal with multiple testing that provide a weaker
control: e.g., limiting the probability to observe at most
k > 1 false positives [15, 35] or controlling a false discov-
ery rate (FDR) [3]. We believe that these methods are less
useful for the purpose of discovering and publishing signif-
icant results, but they may be appealing to practitioners,
e.g., those who seek to reduce dimensionality of machine
learning models [37, 21].

1.2 Related Work
There are several papers covering a wide range of reliabil-

ity issues in IR experiments [22, 5, 31, 25, 38]. We encourage
the reader to follow these articles and references therein.
Wilbur [34] carried out the first comprehensive assessment

of methods for testing statistical significance in IR. He used
several pre-TREC collections and evaluated the Wilcoxon
test, the sign test, the permutation test (also known as the
randomization test), and several modifications of bootstrap-
ping. According to Wilbur, the permutation test and the
bootstrapping test had comparable statistical power, supe-
rior to that of the Wilcoxon and the sign test. These find-
ings were confirmed by Smucker et al. [27] who conducted
similar experiments using several much larger TREC collec-
tions. The experiments of Cormack and Lynam [10], though,
showed that both the Wilcoxon and the sign test were suf-
ficiently accurate and powerful, but somewhat inferior to
the t-test. In addition, they discovered that there was a
strong agreement among the t-test, the bootstrapping test,
and the permutation test. Savoy [23] recommended to use
bootstrapping to estimate the sample median instead of the
sample mean.
There are also several papers focusing on multiple testing

adjustments in IR experiments. Tague-Sutcliffe and Blus-
tein carried out a statistical analysis of TREC-3 results [29]
and adjusted them using the Scheffé’s method [24]. They
found that only large differences in performance metrics
could be considered significant. Blanco and Zaragoza [4]
presented an experimental analysis of spurious effects in IR
and advocated for adoption of multiple comparisons adjust-
ments. Carterette [7] modeled randomness with a linear re-
gression and adjusted p-values for multiplicity using a single-
step method that relied on multivariate Student distribu-
tion. He found that in TREC-8 relative pairwise differences
in the mean average precision smaller than about 50% were
insignificant, which is in line with earlier findings of Tague-
Sutcliffe and Blustein [29].
The focus of our paper is on permutation tests. These

procedures were independently proposed by Pitman [18] and
Fisher [12] in the 1930s, long before advances in computer
hardware made this approach practical. A straightforward
generalization of the permutation test that accounts for mul-
tiple testing is based on the closure principle proposed by
Marcus et al. [16]. It entails verification of up to 2m−1 null
hypotheses (m is the number of tests). Westfall and Young

proposed a computational shortcut, which allows one to con-
sider only m hypotheses [33, 32]. One method of Westfall
and Young, called the MaxT permutation test, was shown to
have high statistical power among methods that provided a
strong control of the FWER in microarray experiments [11].

2. HYPOTHESIS TESTING
We consider a standard experimental setting in IR. There

is a set of queries, which represent user’s information needs,
ground truth relevance judgements for these queries, and
several retrieval systems. Selection of queries can be thought
of as a random sampling from an infinite (or very large)
population. The relevance judgements are compared against
ranked sets of documents (called runs) retrieved by these
systems in response to q queries. Effectiveness of retrieval is
characterized by scores computed separately for each query
using a performance metric, such as the Expected Reciprocal
Rank at depth 20 (ERR@20). The mean of query-specific
scores is then used to evaluate the overall performance of
retrieval systems.

Let scores of systems X and Y be represented by vectors
x = (x1, x2, . . . , xq) and y = (y1, y2, . . . , yq) with mean val-
ues equal to x̄ and ȳ, respectively. Even if x̄ is substantially
larger than ȳ, we cannot safely infer that Y is inferior to
X in the long run. The scores are highly variable across
queries [29] and it is not uncommon for an inferior system
to outperform a superior system on some subpopulation of
queries. Performance of X and Y in this subpopulation is
not a good indication of the relative performance in the en-
tire population of queries. There is always a chance that our
test sample has a lot of queries for which the inferior system
outstrips the superior one. Thus, the measured difference
between X and Y could be attributed to random sampling
effects.

Significance testing is a standard approach to deal with
this problem. Testing involves the following steps:

1. An IR researcher formulates a null hypothesis H (or
simply a null), e.g., by assuming that there is no differ-
ence in ERR@20 (or some other performance metric)
between X and Y . That is, the population means are
equal. In addition, he sets a significance level α that
controls the rate of false rejections (i.e., false positives).

2. He chooses a test statistic T (x, y) (a function of mea-
sured systems’ scores) that provides evidence against
the null hypothesis H. One example is the sample
mean difference: T (x, y) = x̄ − ȳ. Small absolute val-
ues of this statistic present evidence in favor of equal-
ity of population means, while large ones may signify
that H is not true. Another well-known statistic is the
paired t-statistic:

(x̄− ȳ)
√

q(q − 1)√∑q

i=1
(xi − yi − x̄+ ȳ)2

. (1)

3. The researcher quantifies the evidence provided by the
test statistic. Formally, he computes a statistic value
t = T (x, y) from the sample data. Then, he estimates
the probability of obtaining a test statistic value at
least as extreme as t under the null hypothesis (i.e.,
whenH is true). This probability is known as a p-value.
If the p-value is less than the chosen significance level



α, the observed value of the statistic is unlikely to hap-
pen by chance (i.e., due to randomness in selection of
queries). Thus, the researcher can reject the null hy-
pothesis with confidence 1 − α. We discuss this ap-
proach in Section 2.2 in more detail.

To compute the p-value, we need to know the distribu-
tion of the test statistic under the null. In a parametric
approach, we assume that data follows a theoretical distri-
bution, which allows us to derive the distribution of the test
statistic analytically. A widely used parametric test is the
Student’s t-test. In a non-parametric approach, the distri-
bution of the test statistic is estimated through resampling
of observed data (see Sections 2.2-2.3).
When, we observe an unusually small p-value this may be

due to the following:

1. The null hypothesis is not true;

2. The null hypothesis is true and extreme statistic value
is observed by chance;

3. Some underlying assumptions are violated.

The null hypothesis can be true even when the statistic value
is extreme. Yet, if we reject the null only when the corre-
sponding p-value is less than α, we ensure that in a series
of repeated experiments the probability to incorrectly reject
the true null is α. Thus, in the frequentist approach, one
should avoid a temptation to interpret the p-value as the
probability of the null hypothesis being true or as another
measure that quantifies the veracity of the null.
Note especially the third case. If the statistical procedure

relies on the distributional assumptions (such as the nor-
mality assumption for the t-test) and these assumptions are
violated, this may also lead to a rejection of the null. Un-
fortunately, there is no good way to control a rate of false
rejections due to assumption violations. Thus, it is very
desirable to use tests requiring minimal assumptions such
as the non-parametric randomization procedures assessed in
our work.
Effectiveness of a testing procedure can be characterized

by a proportion of true positives (correctly rejected false
null hypotheses) and by a proportion of false positives (in-
correctly rejected true null hypotheses).

2.1 Multiple Testing
The significance level α controls the probability of a false

positive under the true null hypothesis only in a single test.
Consider an example, where the researcher slightly modi-
fies a baseline method 100 times and measures changes in
performance. The significance level in each test is α = 0.05.
Suppose that these modifications of the baseline method did
not result in any real improvements. Therefore, he may ex-
pect to obtain at least one false positive with the probability
of 1 − (1 − α)100 ≈ 0.99, and five false positives on aver-
age. If the researcher is sufficiently näıve, he may decide
that merely obtaining relevance judgements for a larger set
of queries will help to overcome this problem. However he
would still obtain about five false positives on average, irre-
spective of the number of queries used. One can easily verify
this statement using the simulation approach presented in
Section 3.3.
This problem can be addressed by using an adjustment for

multiplicity in testing. The classic adjustment method is the
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Figure 1: Distribution of statistic values obtained through
random 100,000 permutations. Thick vertical lines denote
statistic values computed from non-permuted system scores.

Bonferroni procedure. Let p1, p2, . . . , pm be a set of unad-
justed p-values. The Bonferroni method consists in multi-
plying each pi by the number of tests m (values larger than
1 are set to 1). Then, we reject hypotheses with p-values
smaller than α. This procedure is equivalent to enforcing a
significance level of α/m in each of the m tests. In other
words, the probability to observe a false positive in a single
experiment should be α/m, assuming that the null is true.
Using the union bound, we obtain that in a series of m ex-
periments, the probability to encounter at least one false
positive is controlled at the level α.

The Bonferroni adjustment provides a strong control of a
family-wise error rate (FWER) at the significance level α,
but it is conservative. The Holm-Bonferroni adjustment [13]
is a slightly more powerful method. Let p1 ≤ p2 ≤ . . . ≤
pm be an ordered set of unadjusted p-values. The Holm-
Bonferroni adjustment entails multiplying pi by m − i + 1
and enforcing monotonicity of obtained values. Formally,
the i-th adjusted p-value is equal to:

min(1, max
j≤i

pj · (m− j + 1)). (2)

In the subsequent sections we present several non-parametric
adjustment methods based on randomization. The discus-
sion starts with a description of the permutation test for two
systems.

2.2 Permutation Test (Two Systems)
We compare two systems represented by performance scores

x = (x1, x2, . . . , xq) and y = (y1, y2, . . . , yq). The hypoth-
esis of interest is whether systems’ mean population values
of the performance metric (e.g., ERR@20) are equal. We
additionally assume that under the null hypothesis H the
values of x and y are outcomes of exchangeable multivariate
random variables X and Y . This can be viewed as a combi-
nation of two random processes. The first random process
generates a pair of scores in response to a query. The second
process randomly labels one of the scores as belonging to X
and another as belonging to Y (with equal probabilities).

From the practical perspective, this means that the distri-
bution of the test statistic under the null hypothesis can be
computed by the following randomization procedure. First,
the vectors of performance scores x and y are stored in the



form of the matrix with each vector representing a row:
∣∣∣∣
x1 x2 . . . xq

y1 y2 . . . yq

∣∣∣∣ .

Then we repeatedly obtain new pseudo-observation vectors
x̃ and ỹ by randomly exchanging (i.e., permuting) values in
the columns of this matrix. If the hypothesis H is true, all
such observations are equally likely outcomes of exchange-
able variables X and Y . If, in addition, we compute the
value of the statistic T (x̃, ỹ) for all possible 2q permutations,
we obtain an exact distribution of the test statistic (under
the null). Computing all 2q statistic values is intractable
for all but very small q. Instead, the distribution could be
approximated by carrying out sufficiently many random per-
mutations B.
In Figure 1, there are two approximate distributions of the

t-statistic for B = 100, 000. The thick vertical lines indicate
the values of the statistic t = T (x, y) computed using non-
permuted vectors x and y. The rightmost distribution in
Figure 1 was computed for different systems. The value is
t ≈ 3.5 and only about one in 2,000 of computed statistic
values exceeds t. The p-value is 0.0005, which means that we
can reject the hypothesis that the two systems are identical
at α = 0.05. The leftmost distribution in Figure 1, was
computed using very similar systems. The statistic value
t ≈ 0 and the p-value ≈ 0.5 Hence, H cannot be rejected.
The described procedure is a one-sided (one-tailed) test,

because we reject the null, when the statistic value falls into
the right tail of the statistic distribution. If a statistic distri-
bution is symmetric (as distributions in Figure 1), we may
choose to reject the null, when the statistic value falls into
the left tail, i.e., to compute the p-value as the probability
to observe a statistic value at least as low as −T (x, y). If
we use the paired t-statistic, the one-tailed test allows us to
make statistical inference about directionality of the differ-
ence (i.e., which system has significantly better scores). For
instance, if we observe a high positive value of the T (x, y)
we can reject the hypothesis that Y is better (has a higher
average score) than X.
If we do not know a priori which method is better, we may

choose only to test whether methods are different or not.
To this end, one can employ a two-sided (two-tailed) test,
where a p-value is computed as the probability of observing
statistic values that are at least as high as T (x, y) or at least
as low as −T (x, y). In this paper we focus on two-sided
tests and leave evaluation of one-sided tests for future work.
One approach to directional inference involves carrying out
a two-sided test and comparing mean performance scores
if the difference is significant. This approach is widespread,
but not fully rigorous, because it offers no protection against
choosing the wrong direction [26].
From a computational perspective, there is no need to

evaluate the distribution of T (x, y) explicitly. One can em-
ulate this process using a counter C, initially set to zero.
In each permutation step, we compute T (x̃, ỹ) and verify
if |T (x̃, ỹ)| ≥ |T (x, y)|. When this condition is true, the
counter C is incremented. For a one-sided test, one in-
crements the counter when T (x̃, ỹ) ≥ T (x, y). Finally, the
p-value is computed as C/B, where B is the number permu-
tations.
How many permutation steps are sufficient? The coeffi-

cient of variation (the standard error divided by the mean)

of an estimated p-value is equal to
√

(1− p)/(pB), where

p is the actual p-value [12]. For B = 20, 000 (the minimum
number of permutations used in our tests) the coefficient of
variation for p = 0.05 is approximately equal to 0.03. Using
the Chebyshev’s inequality, we get that the estimate is ac-
curate within 15% for 96% of computed p-values (within 5
standard deviations).

Various test statistics can be employed with the permu-
tation test. We use the paired t-statistic given by Equa-
tion (1), because it is asymptotically standard normal when
differences in query-specific scores are independent or weekly
dependent [28]. The sample mean difference does not have
this property, because the variance of the statistic converges
to zero when q grows. Our preliminary experiments showed
that tests based on the sample mean difference sometimes
suffer from subsantial loss of power.

2.3 Permutation Test (Multiple Systems)

2.3.1 Generalizing Permutation Algorithm
There are m retrieval systems and a baseline. We for-

mulate m null hypotheses Hi by assuming that there is no
difference between the system i and the baseline. Our focus
is on testing all Hi jointly and controlling the FWER.

One may assume that the permutation algorithm of Sec-
tion 2.2 can be generalized to deal with joint testing in the
following fashion. Let m + 1 vectors xi represent perfor-
mance scores of m + 1 systems, where x0 is the baseline.
These vectors are combined in the matrix X (each vector is
a row):

X =

∣∣∣∣∣∣∣∣

x01 x02 . . . x0q

x11 x12 . . . x1q

. . .
xm1 xm2 . . . xmq

∣∣∣∣∣∣∣∣
.

Hypothesis Hi states that there is no difference between
system i and the baseline. Each Hi is associated with a
test statistic Ti(X) = T (xi, x0), where T (x, y) is a paired
t-statistic (Equation 1), and the counter Ci, initially set to
zero. The method involves sufficiently many permutation
steps, each of which includes:

• Randomly permuting values inside columns of X and

obtaining a permuted matrix X̃;

• Computing m statistic values Ti(X̃) = T (x̃i, x̃0) and
comparing them with statistic values obtained for the
original matrix X. Formally, we increment all counters

Ci such that |Ti(X̃)| ≥ |Ti(X)|.

After B iterations, we compute the i-th p-value as Ci/B.
This simple procedure runs in time O(mB), but it fails to
produce p-values adjusted for multiplicity.

One can modify this method to verify the complete null
hypothesis, i.e., that all methods are not distinguishable
from the baseline. It is used as a part of the permutation-
based closed testing presented in Section 2.3.3. When the
complete null does not hold, there is at least one system
different from the baseline. When, we reject the complete
null, we are confident that not all systems are identical, but
we cannot infer which systems are actually different.

To implement this modification, we need an aggregate
statistic that incorporates all m individual statistics Ti(X).
We use the maximum of all statistics:

Taggr(X) = max
1≤i≤m

|Ti(X)|.



Similarly to the permutation algorithm for two systems (see
Section 2.2), we have one (complete) null hypothesis, one
(aggregate) statistic, and a single counter C initialized with
zero. We carry out B permutations steps, each of which in-
cludes random reshuffling of values inside columns of X to

obtain the permuted matrix X̃. If Taggr(X̃) ≥ Taggr(X),
we increment C. Finally, we reject the complete null if
C/B < α. To verify a partial hypothesis that methods i1,
i2, . . . , ik are the same, one should apply this algorithm to
a sub-matrix containing only rows i1, i2, . . . , and ik.

2.3.2 The MaxT Permutation Test
Westfall and Young proposed the MaxT permutation test,

which is an extension of the generic procedure presented in
Section 2.3.1. It uses the following m functions:

MaxTi(X) = max
i≤j≤m

|Tj(X)|.

Let ti = |Ti(X)| be the statistic values computed for the
unmodified matrix of observations X. Without a loss of
generality we assume that ti are sorted in the non-increasing
order : t1 ≥ t2 ≥ . . . ≥ tm. There are also m counters Ci

(one for each hypothesis) initially set to zero.
We carry out B iterations. In each iteration, we obtain

the permuted matrix X̃ and compute m values MaxTi(X̃).

If MaxTi(X̃) ≥ MaxTi(X) we increment the counter Ci. In
the end, we obtain p-values using the formula:

p-valuei = max
1≤j≤i

Cj/B.

The MaxT permutation test runs in O(mB) time and
controls the FWER under the assumption of subset piv-
otality. Subset pivotality means that distributions of ob-
served p-values under any partial null hypothesis should be
the same as under the complete null hypothesis. Subset piv-
otality does not always hold in practice. Departure from this
assumption may result in a low test power or inflated rate
of false positives [35].

2.3.3 Joint Hypotheses and Closed Testing
Consider hypotheses H1, H2, H3 and assume that we de-

cided to reject at least one of them. In doing so, we express
our belief that the respective joint hypothesis H1H2H3 =
H1 ∩ H2 ∩ H3 is not true. This observation suggests that,
before applying individual tests to H1, H2, and H3, we could
test the joint hypothesis (also known as an intersection hy-
pothesis). If the intersection hypothesis is rejected, we may
make additional tests to decide which individual hypotheses
can be rejected. However, if H1H2H3 is not rejected, we
retain all the implied hypotheses and no further testing is
needed.
This observation is the foundation of the closed testing

procedure proposed by Marcus et al. [16]. In closed test-
ing, all joint hypotheses are tested directly. If we fail to
reject some joint hypothesis, we do not reject all implied
hypotheses either. To test joint hypotheses, we use the per-
mutation method from Section 2.3 and call this approach
the permutation-based closed testing.
Assume now that H1, H2, and H3 are true null hypotheses

and, therefore, H1H2H3 is also a true null. It is tested using
an α-level test. Thus, the probability of not rejecting this
true joint hypothesis is at least 1−α. According to the closed
testing principle, if we do not reject the joint hypothesis
H1H2H3, we do not reject any of the implied hypotheses

Figure 2: An example of closed testing with three hypothe-
ses and significance level α = 0.05. We give a p-value for
each intersection hypothesis. Gray denotes hypotheses that
cannot be rejected.

H1, H2, and H3 either. Consequently, the probability of not
rejecting any of them is at least 1−α, and the probability of
rejecting at least one of them is at most α. In other words,
this test controls the family-wise error rate (FWER) in the
family of three hypotheses H1, H2, and H3.

An example of closed testing with three hypotheses is
given in Figure 2. We test 7 intersection hypotheses (in-
cluding elementary hypotheses Hi as a special case) at the
significance level α = 0.05. In that, H3 is rejected, because
H3 itself as well as all three hypotheses that include H3, i.e.,
H1H3, H2H3, and H1H2H3, have p-values smaller than α.
H1 and H2 cannot be rejected, because we could not reject
H1H2.

Closed testing is computationally intensive. Given that
we have m individual hypotheses, there are 2m − 1 intersec-
tion hypotheses each of which can be tested in O(mB) time.
Thus, the overall runtime of the permutation-based closed
testing is O(m2mB).

To reduce runtime of the complete closed testing, one
could start with the narrowest intersection hypothesis (that
includes all m individual hypotheses) and proceed to more
generic ones. Once a hypothesis H cannot be rejected, all
hypotheses implied by H need not be considered. In the ex-
ample of Figure 2, we could have started with H1H2H3 and
proceeded to testing H1H2. Because H1H2 could not be re-
jected, H1 and H2 could not be rejected as well. Therefore,
there is no need to test them explicitly. According to our
experiments, this modification of closed-testing procedure is
10-20% faster than complete closed testing, but the overall
runtime is still exponential in m.

2.4 TEST COLLECTIONS AND SYSTEMS

2.4.1 TREC Data
Similar to previous studies [27, 10, 7], we analyze data

from several TREC ad hoc tasks.1 These tasks can be di-
vided into two groups: TRECs 3-5, 7,8, and the latest Web
tasks in TRECs 19, 20. The relevance judgements in the
first group are binary. They were collected through pool-
ing to depth at least 100 [5]. The second group has 5-grade
relevance judgments obtained through pooling at depth 20

1http://trec.nist.gov/pubs.html



[9]. The average number of judgements per query varies
among tasks: It is roughly 2,000 in the early TRECs and is
about 400 in TRECs 19, 20. The proportion of documents
considered (somewhat) relevant is typically 10-20%.
The retrieval systems were represented by official runs pro-

duced by TREC participants. We downloaded raw run data
and relevance judgements from the TREC website and com-
puted the mean average precision (MAP), ERR@20 [8], and
NDCG@20 using utilities trec_eval, and gdeval, which are
provided by TREC organizers.

2.4.2 Learning-to-Rank Set MSLR-WEB30K.
This data set is provided by Microsoft2. It contains ma-

chine learning data with 5-grade relevance judgements, which
were obtained from an obsolete training set used internally
by Microsoft Bing.
MSLR-WEB30K has relevance judgments for 30,000 queries,

which makes it possible to derive reliable conclusions about
relative standings of retrieval systems. The judgements were
collected in a way similar to a standard pooling. (Personal
communication with Tao Qin, Microsoft Research Asia.)
The Microsoft data set is different from TREC collections

in several important ways. First of all, it contains machine
learning data, where a response of a retrieval system to a
specific query is represented by a set of feature vectors such
as BM25 scores [20] or document quality scores. Each doc-
ument returned for a given query is represented by exactly
one feature vector and a single label that expresses the de-
gree of relevance between the document and the query.
It is not possible to access the original collection as well as

to implement a system that uses data other than a set of pre-
computed features (stored in the MSLR-WEB30K file). In
contrast to TREC runs (potentially representing thousands
of documents per query), the average number of judged doc-
uments per query in MSLR-WEB30K is only 126.
Microsoft provides a rich set of 136 features, which are not

scaled and have clear descriptions (i.e., they are not anony-
mized). This allows us to generate runs closely resembling
runs obtained from a real retrieval system without actually
implementing such a system. We use the following three
methods or a combination thereof:
Method 1 computes a weighted sum of BM25 scores [20]

as well as scores based on the language models [19] with
two types of smoothing: Jelinek-Mercer and Dirichlet [36].
The value of this sum may be additionally multiplied by a
linearly transformed quality score (feature 133).
Method 2 employs randomization to produce Oracle runs

that improve over BM25 in a predictable way. We randomly
select queries to be improved (with the probability p). A
weight of each document returned in response to the selected
queries is multiplied by 1+r(2l−1), where r is a magnitude
of improvement and l is the document relevance label.
Method 3 employs randomization to produce different runs,

which nevertheless have almost identical performance scores.
To make a randomized version of a run, we modify scores by
adding a number drawn from a uniform distribution (with
support 0–0.2) as proposed by Blanco and Zaragoza [4].
We evaluate methods using only ERR@10, which ignores

documents at depths higher than 10.

2http://research.microsoft.com/en-us/projects/
mslr/

Table 1: Fractions of Individually Significant Results
Deemed Insignificant due to Adjustments for Multiplicity
(smaller is better), α = 0.05, ERR@20.

TREC Closed MaxT Holm
test Bonf

3 16.1% 16.4% 19.1%
4 12.7% 12.7% 15.4%
5 7.5% 8.7% 10%
7 15% 15.4% 17.3%
8 8.2% 8.2% 9.5%
19 31.1% 32.1% 32.1%
20 33.5% 33.5% 38.1%

All 16.4% 16.8% 18.8%

3. EXPERIMENTS

3.1 Statistical Tests Employed
Our experiments involve several statistical tests including

permutation-based closed testing, the MaxT permutation
test, and the Holm-Bonferroni adjustment (Equation 2) of
the unadjusted permutation test p-values (see Section 2.2).

The permutation tests were implemented in C++. We use
the Mersenne Twister generator of random numbers [17],
which has a period of 219937 − 1. In the analysis of the
TREC data, the number of permutations B = 50, 000; in the
simulation studies with MSLR-WEB30K data, B = 20, 000.
Our code is available for download at https://github.com/
searchivarius/PermTest.

3.2 TREC data
Our main goal is to assess (1) an agreement among dif-

ferent tests and (2) a degree of conservativeness of multi-
ple comparisons adjustment procedures. To this end, we
used TREC data to randomly choose retrieval systems and
compare them against a randomly chosen baseline. Because
closed testing run time is exponential in the number of com-
pared systems, the number of systems is limited to 10. We
carried out 50 iterations for several TREC data sets (see
Table 1).

The agreement among these four statistical tests for TREC
data is shown in Figure 3a. One can see that all tests that
adjust for multiplicity produce larger p-values than the un-
adjusted permutation test. When we compare only among
tests that adjust p-values for multiple comparisons, we can
see that there is very little difference in p-values smaller than
0.1. The application of the Holm-Bonferroni adjustment
does result in much larger p-values, but only for p-values
that are already large (> 0.1). These two observations are
consistent with findings by Dudoit et al. [11]. Also note that
the outcomes from the permutation-based closed testing and
the permutation MaxT tests are almost identical.

There is no ground truth information about relative per-
formance of systems in TREC. This is why we can compare
the power of tests only approximately, by examining the
number of significant results. According to Table 1, multi-
ple comparisons adjustments “kill” from 8 to 38 percent of
results that were deemed significant by the unadjusted per-
mutation test. In that, there is very little difference among
tests. Closed testing is being slightly better than MaxT, and
MaxT is slightly better than the Holm-Bonferroni adjust-
ment. These is observed in all TRECs, but the difference
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(a) TREC data, 10 runs in a comparison
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(b) MSLR “Language models” data, 8 runs in a com-
parison

Figure 3: Agreement of p-values among adjustment methods. A performance metric is ERR@10.

is too small to be of practical importance. Note that the
fraction of results that became insignificant due to multiple
comparisons adjustments vary greatly among TRECs. Only
about 10% of all results became insignificant in TREC-5, but
in TREC-20 we lose almost half of the results, if multiple
comparisons adjustments are used.

3.3 MSLR-WEB30K data
For MSLR-WEB30K we carried out a simulation study,

in which we generated runs with 30,000 queries (one run
for each retrieval system). These runs are “populations”
that represent long-term performance of retrieval systems.
Systems’ responses to a smaller set of q queries were gen-
erated through repeated sampling from 30,000 queries. As
a result, we obtained simulated runs representing perfor-
mance of each system for selected q queries (as measured by
ERR@10). In addition, mean value for each metric was com-
puted. We evaluated several scenarios where q varied from
50 to 6,400. The sample size of 50 is intended to represent a
typical TREC experimental setting, while much larger sets
of queries mimic experimental environment accessible by a
commercial search engine developer/researcher.
Even though the sample mean of a performance metric

may vary considerably in each simulation step, the average
values of ERR@10 converge to the mean population val-
ues (of 30,000 queries) as the number of simulation steps
increases. Thus, we can use population values of perfor-
mance metrics to establish ground truth relative standings
among systems. To this end, we select a cutoff value γ =
0.5% and consider all pairs of systems with percent dif-
ferences in ERR@10 (computed for the whole population)
smaller than γ as identical. By repeating our analysis for
γ ∈ {0.05, 0.1, 0.5, 1}, we confirmed that conclusions did not
depend on the choice of this cutoff value.
The cutoff-based approach reflects a point of view that

small differences in system performance may be due to sam-

pling uncertainty of our 30,000 queries from a much larger
super population. In fact, some statisticians question

. . . whether it makes sense to even consider the
possibility that the means under two different ex-
perimental conditions are equal. Some writers
contend that a priori no difference is ever zero
(for a recent defense of this position, see Tukey
1991, 1993). Others, including this author, be-
lieve that it is not necessary to assume that every
variation in conditions must have an effect [26].

The latter point is supported by studies showing that
small differences may not affect user experience [30].

We generated three sets of populations: “Language Mod-
els”, “Oracle 0.25”, and “Oracle 0.5” (see Section 2.4). Lan-
guage models were generated using Method 1. Oracle runs
were generated by Method 2 with probabilities of improve-
ment 0.25 and 0.5. The best runs in the “Language Models”,
“Oracle 0.25”, and “Oracle 0.5” improved over the BM25 by
17%, 14%, and 27%, respectively. In each of the three pop-
ulation sets, we took a system with performance close to the
median of the set, and replicated it 4 times using randomiza-
tion (Method 3). This system is considered to be a baseline.
Overall, each population set had 8 runs, half of which were
almost identical (in terms of the mean value of ERR@10).

Given a specific sample size and a set of runs, we carried
out 500 iterations of the resampling process and tested if the
differences between simulated runs were significant (using
selected statistical tests). Because we knew the ground truth
relative standings of retrieval systems, it was possible to
determine the number of false positives and negatives.

The agreement among tests is plotted in Figure 3b. The
plot includes the “Language Model” runs only (all query
set sizes from 50 to 6,400), because results obtained for
Oracle runs are almost identical. One can see that agree-
ment graphs are also similar to those for the TREC data:



(1) multiple comparisons adjustment procedures produce
larger p-values than the unadjusted permutation test, (2)
permutation-based closed testing and the MaxT permuta-
tion test agree almost ideally for the whole range of p-values,
(3) the Holm-Bonferroni adjustment applied to p-values of
the unadjusted permutation test is more conservative than
MaxT and closed testing. Similar to TREC experiments,
there is virtually no difference among all multiple compar-
isons methods for small p-values (< 0.1). Observation (2) is
important, because we can use the MaxT permutation test
instead of considerably less efficient closed testing (whose
run time is exponential in the number of systems m).

Table 2: The Percent of False Negatives/Positives for differ-
ent query set sizes (α = 0.05)

Query Set Size

50 100 400 1600 6400

“Lang. Models”: 4 out of 8 runs same as the baseline
Unadjusted 85.7/14.4 80.8/11.6 53.9/10.0 25.9/15.4 2.5/17.0

Closed Test 92.9/0.0 88.8/0.2 69.5/1.7 36.6/3.1 5.2/6.8

MaxT 93.9/0.0 91.8/0.2 68.0/1.2 35.7/3.0 6.3/6.6

Holm-Bonf. 94.9/2.0 92.5/1.8 69.6/2.6 37.0/3.2 6.5/6.2

“Oracle 0.25”: 4 out of 8 runs same as the baseline
Unadjusted 91.6/12.9 86.0/14.1 56.9/13.9 22.9/14.5 0.3/9.3

Closed Test 98.9/1.8 97.8/1.1 73.8/2.1 35.3/2.8 1.1/3.2

MaxT 97.3/2.0 96.4/3.0 74.4/3.0 36.1/5.5 1.0/4.6

Holm-Bonf. 98.2/2.4 97.0/3.4 74.9/2.6 37.4/4.8 1.9/4.2

“Oracle 0.5”: 3 out of 8 runs same as the baseline
Unadjusted 87.2/8.1 76.0/8.5 49.0/9.5 22.0/8.9 18.6/6.9

Closed Test 98.2/1.1 93.8/0.4 62.5/2.5 26.0/2.1 19.6/2.1

MaxT 96.9/1.2 93.3/1.6 61.4/2.6 26.5/3.2 19.4/2.8

Holm-Bonf. 97.7/1.0 91.5/2.2 62.9/2.0 27.3/2.8 19.5/2.0

Format: false negative rate (blue)/false positive rate (red).

Using ground truth relative standings for system perfor-
mance, we computed the rates of false positives and false
negatives for different query set sizes. In Table 2, we present
results of this evaluation. Surprisingly, there is very little dif-
ference in the rate of false negatives (approximately within
10%) between the unadjusted permutation test and any test
that takes multiplicity into account. However, when the
number of queries is small (as in TREC ) and the number
of false negatives is close to 100%, the number of detected
differences in system performance may vary greatly. For
instance, in the case of 50 queries and “Language Models”
runs, the unadjusted permutation test detects 14.3% of all
true differences (85.7% false negative rate), while the MaxT
permutation test detects only 6.1% (93.9% false negative
rate). Detection of these additional 8.2% true differences
comes at a price of at least one false finding in 14.4% of all
experimental series. In contrast, the number of false posi-
tives for the MaxT test is zero in this case.
If the researcher does not know the true number of differ-

ent systems, he may conclude that the MaxT test performs
much worse than the unadjusted permutation test from the
perspective of detection of true differences. Yet, in our opin-
ion, both tests perform rather poorly in this situation. When
there is a sufficient number of queries, all the tests detect
more than 80-90% of true differences. In that, only the tests
that adjust for multiplicity have the false positive rate close

to the nominal level of α = 0.05, i.e., they perform better
than the unadjusted test, without being overly conservative.

Consider a somwehat extreme example where out of 100
systems 90 are equivalent to the baseline. For α = 0.05,
unadjusted tests may find 4-5 statistically significant differ-
ences, which represent false positives. It is possible that for
small sets of queries no true difference will be detected, if
false negatives rates are as high as those listed in the first
column of Table 2.

3.4 Discussion
Our results indicate that multiple comparisons adjust-

ments can be conservative when the number of queries is
small. Yet, as the number of queries increases, the FWER
approaches the nominal level α. When the number of queries
is large, both types of tests (with and without multiplicity
adjustment) detect similar number of true differences, but
only adjustments for multiple comparisons allow us to con-
trol the number of false positives.

This conclusion may be affected by a small scale of our
experiments (a joint test involves at most 10 systems). Yet,
a small-scale experiment is not unusual for studies with both
an exploratory and a confirmatory step. In the exploratory
step, the researcher may “play” with a large number of sys-
tems and choose various heuristics to assess systems’ perfor-
mance. Multiple comparisons adjustments are typically not
used in this step. The outcome is a small number of systems
to be tested rigorously. During the confirmatory step, the
researcher formulates the null hypotheses and carries out a
statistical test using previously unseen data. We argue that
in this step multiple comparisons adjustments are essential.

We found that the Holm-Bonferroni adjustment was only
slightly more conservative than the MaxT permutation test
and/or the permutation-based closed testing, which was true
for both the TREC and the MSLR experiments. This is
surprising, because performance scores across systems are
correlated. In the presence of correlations, the MaxT per-
mutation test and the permutation-based closed testing are
expected to be more powerful than the Holm-Bonferroni ad-
justment.

However, permuting the data, subtracting the baseline
row, and computing the t-statistic is equivalent to first sub-
tracting the baseline row, then permuting the differences,
and computing the t-statistic. Thus, it is the correlations
among the deviations from the baseline that matter. We
found that these correlations are small. For instance, for
the TREC-8 data and ERR@20, the correlation is almost
zero on average. This explains similar relative performance
of the Holm-Bonferroni adjustment and the other two pro-
cedures. Yet, this may not generally hold.

We carry out an artificial experiment in which we took two
vectors of performance scores such that there was a signifi-
cant statistical difference between them with a p-value equal
to β. Then, we replicated one of the vector several times,
which is equivalent to having a number of identical systems
evaluated against the baseline. The p-value computed using
either the MaxT permutation test or the permutation-based
closed testing procedure was approximately β in all experi-
ments. The Holm-Bonferroni correction produced a p-value
of mβ, where m is the number of times the system was
replicated. Thus, using the MaxT permutation test or the
permutation-based closed testing can be advantageous.



While the run-time of the permutation-based closed test-
ing procedure is exponential in the number of systems being
evaluated, the run-time of the MaxT permutation test is
reasonably short. For example, it takes 6 minutes to carry
out 100K iterations of the MaxT permutation test to assess
the joint statistical significance of 8 system runs represented
by performance scores for as many as 30K queries.3

One may find our use of machine learning data objec-
tionable, because it requires assumptions regarding what
can be considered a retrieval system. Note, however, that
the learning-to-rank community already made these assump-
tions and models the behavior of retrieval systems in the
same fashion as we constructed“Language Model”runs. The
only difference is that we designed a (semi)-linear ranking
function with coefficients tuned by hand. They, instead, re-
place this step with a machine learning algorithm. They also
evaluate performance of constructed runs using ERR@10
and employ statistical tests. Thus, it is important to show
that the statistical tests work well in the learning-to-rank
setting. Also note that all our tests exhibit similar behav-
ior for both the TREC and MSLR data, which supports the
hypothesis that MSLR runs are similar to those produced
by real retrieval systems.
Even though permutation tests do not make strong distri-

butional assumptions such as the normality or i.i.d, they are
not assumption free. Exchangeability means that we test the
equality of distributions instead of sample means. This may
appear problematic, because sometimes the test may reject
the null due to, e.g., a difference in variances. In particular,
the simulation studies of Huang et al. [14] showed that in-
equality of distributions sometimes results in inflated rates of
false positives. Yet, as noted by Efron and Tibshirani [12],
permutation tests typically perform well in practice, even
if the equality of distributions is not a reasonable assump-
tion. They also suggest that the permutation test should
be applied in all circumstances when there is “something to
permute”, even if other methods such, as the bootstrap test,
are applicable as well. In addition, the equality of distribu-
tions is an underlying assumption for a number of statistical
tests, such as the Student’s t-test, already used by the IR
community.

4. CONCLUSIONS
We carried out a comparative assessment of non-parametric

testing procedures appropriate in the presence of multiplic-
ity. To the best of our knowledge, such comparisons have not
been done previously in the IR setting. We use only publicly
available test collections and make our software available for
download.
The experiments employ the realistic TREC runs and runs

constructed from the Microsoft learning-to-rank dataset. The
latter is a novel approach, which allows us to (1) obtain
ground truth relative standings among systems, (2) experi-
ment with much larger sets of queries and relevance assess-
ments compared to the TREC setting.
Our recommendation is to employ adjustments for mul-

tiple comparisons in confirmatory experiments. When the
number of queries is small, these procedures may, indeed,
detect many fewer significant results than standard proce-
dures such as the Student’s t-test. However, the advantage
of the tests without adjustments may be illusory. In this

3The CPU is Intel Core i7 (3.4GHz).

case, both the unadjusted tests and tests that adjust for
multiplicity detect only a small fraction of all true differ-
ences. In that, results obtained using unadjusted tests may
contain a lot of false positives, possibly, more than signif-
icant results. When there is a large query set, both types
of tests may have enough power to detect true differences
among systems. Yet, only the procedures adjusting for mul-
tiplicity control the rate of false positives.

The permutation-based closed testing relies on fewer as-
sumptions than the MaxT permutation test, yet, it is im-
practical for all but very small sets of runs. Our recommen-
dation is to use the MaxT permutation test, which seems
to produce very similar results while being reasonably fast.
In our experiments, the Holm-Bonferroni adjustments per-
formed as well as the other adjustment methods. Yet, this
may be due to specifics of our simulations, where there are
small correlations among deviations from the baseline. As
the example in Section 3.4 shows, permutation methods can
be much more powerful when strong correlations are present.

5. ACKNOWLEDGMENTS
We thank Tao Qin (Microsoft Research Asia) for informa-

tion about the MSLR collection. Leonid Boytsov was par-
tially supported by a SIGIR Student Travel Grant. Dr. West-
fall was partially supported by the following grants: NIH
RO1 DK089167. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of any of
the funding agencies.

6. REFERENCES
[1] Anonymous. Guidance for Industry - E9 Statistical

Principles for Clinical Trials. Technical report, U.S.
Department of Health and Human Services - Food and
Drug Administration, Center for Drug Evaluation and
Research, Center for Biologics Evaluation and
Research, ICH, 1998.

[2] R. Bender and S. Lange. Adjusting for multiple
testing—when and how? Journal of Clinical
Epidemiology, 54(4):343 – 349, 2001.

[3] Y. Benjamini and Y. Hochberg. Controlling the False
Discovery Rate: A Practical and Powerful Approach
to Multiple Testing. Journal of the Royal Statistical
Society. Series B (Methodological), 57(1):289–300,
1995.

[4] R. Blanco and H. Zaragoza. Beware of relatively large
but meaningless improvements. Technical report
YL-2011-001, Yahoo! Research, 2011.

[5] C. Buckley, D. Dimmick, I. Soboroff, and E. Voorhees.
Bias and the limits of pooling for large collections.
Information Retrieval, 10:491–508, 2007.

[6] R. J. Cabin and R. J. Mitchell. To Bonferroni or not
to Bonferroni: when and how are the questions.
Bulletin of the Ecological Society of America,
81(3):246–248, 2000.

[7] B. A. Carterette. Multiple testing in statistical
analysis of systems-based information retrieval
experiments. ACM Trans. Inf. Syst., 30(1):4:1–4:34,
Mar. 2012.

[8] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan.
Expected reciprocal rank for graded relevance. In
Proceeding of the 18th ACM conference on



Information and knowledge management, CIKM ’09,
pages 621–630, New York, NY, USA, 2009. ACM.

[9] C. L. A. Clarke, N. Craswel, I. Soboroff, and G. V.
Cormack. Overview of the TREC 2010 Web track. In
TREC-19: Proceedings of the Nineteenth Text
REtrieval Conference, 2010.

[10] G. V. Cormack and T. R. Lynam. Validity and power
of t-test for comparing map and gmap. In Proceedings
of the 30th annual international ACM SIGIR
conference on Research and development in
information retrieval, SIGIR ’07, pages 753–754, New
York, NY, USA, 2007. ACM.

[11] S. Dudoit, J. Schaffer, and J. Boldrick. Multiple
hypothesis testing in microarray experiments.
Statistical Science, 18(1):71–103, 2003.

[12] B. Efron and R. Tibshirani. An Introduction to the
Bootstrap. Monographs on Statistics and Applied
Probability. Chapman & Hall, 1993.

[13] S. Holm. A Simple Sequentially Rejective Multiple
Test Procedure. Scandinavian Journal of Statistics,
6:65–70, 1979.

[14] Y. Huang, H. Xu, V. Calian, and J. C. Hsu. To
permute or not to permute. Bioinformatics,
22(18):2244–2248, 2006.

[15] E. L. Lehmann and J. P. Romano. Generalizations of
the familywise error rate. Annals of Statistics,
33(3):1138–1154, 2005.

[16] R. Marcus, P. Eric, and K. R. Gabriel. On closed
testing procedures with special reference to ordered
analysis of variance. Biometrika, 63(3):655–660, 1976.

[17] M. Matsumoto and T. Nishimura. Mersenne twister: a
623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Trans.
Model. Comput. Simul., 8(1):3–30, Jan. 1998.

[18] E. Pitman. Significance tests which may be applied to
samples from any population. Royal Statistical
Society, Supplement, 4:119–130, 1937.

[19] J. M. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In Proceedings of
the 21st annual international ACM SIGIR conference
on Research and development in information retrieval,
SIGIR ’98, pages 275–281, New York, NY, USA, 1998.
ACM.

[20] S. Robertson. Understanding inverse document
frequency: On theoretical arguments for IDF. Journal
of Documentation, 60:503–520, 2004.

[21] Y. Saeys, I. n. Inza, and P. Larrañaga. A review of
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