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Abstract. We present experimental analysis of approximate search al-
gorithms that involve indexing of deletion neighborhoods. These methods
require huge indices whose sizes grow exponentially with respect to the
maximum allowable number of errors k. Despite extraordinary space re-
quirements, the super-linear indices are of great interest, because they
provide some of the shortest retrieval times.

A straightforward implementation that creates a hash index directly over
residual strings (obtained by deletions from dictionary words) is not
space efficient. Rather than memorizing complete residual strings, we
record only deleted characters and their respective positions. These data
are indexed using a perfect hash function computed for a set of residual
dictionary strings [2].

We carry out an experimental evaluation of this approach against several
well-known benchmarks (including FastSS, which stores residual strings
directly [3]). Experiments show that our implementation has a compa-
rable or superior performance to that of the fastest benchmarks. At the
same time, our implementation requires 4-8 times less space as compared
to FastSS.

Keywords: wildcard neighborhood generation, reduced alphabet neigh-
borhood generation, Mor-Fraenkel method, perfect hashing, FastSS

1 Introduction

Approximate string searching is ubiquitous in information retrieval, spellcheck-
ing, computational biology, speech recognition, and security software (e.g., for
detection of weak passwords). This problem is twofold: finding the locations of
a pattern inside a given text, and finding matching strings in a set, i.e., in a
dictionary. In both cases, the pattern needs to match data only approximately.
A degree of closeness is determined by a distance function. We restrict our atten-
tion to the case of lossless methods which guarantee retrieval of all words within
the Levenshtein distance k from the search pattern [15]. This distance function
is equal to the minimum number of basic edit operations (insertions, deletions,
and substitutions) required to convert one string into another. Note that we are
primarily interested in practical aspects of this problem and evaluate only those
methods that are capable of tolerating more than one error (i.e., support k > 1).
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We focus on the methods with super-linear indices, which rely on generation
of deletion neighborhoods and/or reduced alphabet neighborhoods. In partic-
ular, deletion neighborhoods are memorized in the index. The redundancy in
storage allows us to achieve very short retrieval times. It is also noteworthy that
these methods involve neither direct computation of the Levenshtein distance nor
explicit verification if the distance between the pattern and dictionary words is
at most k.

The rest of the paper is organized as follows. Prior art is described in Subsec-
tion 1.1. In Subsection 1.2, we introduce notation and formalize the problem. The
implemented methods are described in Section 2, which starts with a discussion
on the concepts of full and wildcard neighborhood generation. The experiments
are presented in Section 3. Section 4 concludes the paper.

1.1 Related Work

Damerau [8] presented misspelling statistics and described one of the first meth-
ods of approximate dictionary searching. This method could tolerate only a sin-
gle error. Levenshtein proposed a string similarity function that is equal to the
minimal number of insertions, deletions, and substitutions necessary to make
strings equal. A dynamic programming algorithm to efficiently compute Lev-
enshtein distance was independently discovered by several scientists [20]. This
classic algorithm has a quadratic complexity and a number of improvements
were suggested [18].

To further reduce retrieval time, it is necessary to index the data. There are
a lot of indexing techniques for approximate dictionary searching, which rely,
among other methods, on generating neighborhoods, indexing of contiguous and
gapped string subsequences, as well as on organizing a dictionary in the form of a
trie (a prefix tree). Details of the methods for approximate dictionary searching
can be found in the surveys on this topic [11,14,19,5].

A common approach to approximate dictionary searching involves generation
of a pattern full k-neighborhood: strings obtainable from the pattern by at most
k edit operations. Then, elements of the full neighborhood are searched in the
dictionary for an exact match. This method is not efficient for large k and/or
large alphabets, because the size of the full neighborhood is O

(
nk|Σ|k

)
(where

n and |Σ| is the size of the pattern and the alphabet, respectively) [21].
Much shorter retrieval times can be achieved through indexing of residual

strings, i.e., strings obtainable by deletions from dictionary words. Along with
residual strings, it is necessary to memorize deleted characters and their positions
in the original dictionary words. We call these data deletion lists. A special case
of this method for k = 1 was described by Mor and Fraenkel in 1982 [17]. A
generalization of the Mor-Fraenkel method for k > 1 was independently proposed
by Bocek et al. [3] and Boytsov [5]. Both Bocek et al. and Boytsov suggested
to index residual strings and positions of deleted characters directly (via a hash
index), which is not space efficient. For k = 1, there are methods that have better
space requirements. Mihov and Schulz [16] store one-deletion neighborhoods in
the form of finite transducers. In the algorithm by Belazzougui [2], all residual
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words are enumerated using a minimal perfect hash function. Then, only deleted
characters instead of original dictionary strings are memorized. We are not aware
of any attempts to utilize compact deletion indices for k > 1.

An intermediate approach between the full neighborhood generation and the
generation of deletion neighborhoods is a reduced alphabet neighborhood gen-
eration. In this approach, the strings over the original alphabet are mapped into
strings over a smaller, i.e., reduced, alphabet. An experimental evaluation of
the reduced alphabet neighborhood generation was carried out by Boytsov [5].
It is possible to combine the reduced alphabet neighborhood generation with
the Mor-Fraenkel method, but we have not seen an implementation of this idea
before.

All described modifications of the Mor-Fraenkel algorithm do not entail com-
putation of the Levenshtein distance or explicit verification if the distance be-
tween the pattern and dictionary words is at most k. In the lossy version of the
Mor-Fraenkel method descried by Karch et al. [12], deletion indices are used only
as a filtering step. Instead of memorizing residual strings, deleted characters, and
their positions, Karch et al. propose to keep only identifiers of original dictio-
nary words. Consequently, at the verification step, a list of candidates should be
compared directly against a search pattern through computing the Levenshtein
distance. Karch et al. combine this approach with pattern partitioning: most dic-
tionary words are divided into halves and each half is indexed separately (this
approach was known already in the seventies [13,9]).

There were also attempts to blend partial neighborhood generation with tries.
Cole et al. [7] introduced a k-errata tree, where errors are treated by recursively
creating insertion, substitution, and deletion subtrees. The k-errata tree has a

super-linear index whose size is upper bounded by O
(
λN +N (5 log2N)k

k!

)
, where

N is the number of dictionary strings. Boytsov [5] conducted an experimental
evaluation of this method, which showed that the k-errata tree was impractical
for k > 1.

1.2 Notation and Problem Formalization

We consider algorithms that operate on strings, i.e., sequences of characters over
an ordered finite alphabet Σ (|Σ| is the size of the alphabet). The i-th character
of the string s is denoted by s[i]. The string obtained from s by deletion of the i-th
character is denoted by ∆i(s). A reverse operation consists in inserting character
c into position i, which introduces c before the character s[i]. We assume that
the reader is familiar with notions of a substring as well with the concepts of a
prefix, a suffix, and, a q-gram (a substring of the fixed length q).

Several implemented algorithms rely on mapping the original alphabet Σ to
a smaller alphabet σ, which is called a reduced alphabet. A projection is done
using a hash function h(c), which induces a character-wise projection from the
set of strings over the original alphabet Σ to the set of strings over the reduced
alphabet σ in a straightforward way.
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The similarity between functions u and v is measured via the Levenshtein
distance, which is denoted by ED(u, v). It is equal to the minimum number of
basic edits (insertions, deletions, and substitutions) required to convert u into v
(and vice versa). Knowledge of algorithms to compute the Levenshtein distance
is not required for understanding this paper.

Assume that W = (s1, s2, . . . , sN ) is an ordered set of strings, called dictio-
nary. The search pattern and its length are denoted by p and n, respectively.
The maximum allowed edit distance is represented by k. The problem of approx-
imate dictionary searching consists in retrieval of all dictionary strings si such
that ED(p, si) ≤ k. In the associative version of this problem, it is necessary to
find all strings si within distance k from the pattern as well as data associated
with strings si (also called satellite data). A string identifier is one well-known
example of satellite data.

2 Method Descriptions

2.1 Full, Reduced, and Deletion Neighborhood

A neighborhood generation is a classic search method [10]. The full neighborhood
generation entails computation of all strings within the Levenshtein distance k
from the search pattern p. These strings comprise a full k-neighborhood. Each
element of the full k-neighborhood is searched for in the dictionary exactly.
Because the size of the neighborhood is O

(
nk|Σ|k

)
[21], this algorithm is only

practical when neither of the following parameters are large: the size of the
alphabet, the maximum allowed Levenshtein distance, and the pattern length.

Consider an example of the string find. The full one-neighborhood contains
the following strings:

– the original string find;

– 3 strings obtained by applying a single deletion;

– 5× 26 strings obtained by applying a single insertion;

– 4× 25 strings obtained by applying a single substitution.

In total, the one-neighborhood contains 231 unique strings. However, the
two- and the three-neighborhood of the string find contain about 20K and
1.5M unique strings, respectively.

One approach to compress the full neighborhood is to replace some characters
with wildcards. Let us extend the alphabet with a wildcard pseudo-character ?

that matches any alphabet character. Then, the full wildcard one-neighborhood
of the word find may contain the following strings:

– the original string find;

– 3 strings obtained by a single deletion;

– 5 strings obtained by one insertion: ?find, f?ind, fi?nd, fin?d, find?;

– 4 strings obtained by one substitution: ?ind, f?nd, fi?d, fin?.
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The wildcard one-neighborhood comprises only 13 strings as compared to
231 strings of the full one-neighborhood. In general, the size of the wildcard
k-neighborhood is smaller than the size of the full k-neighborhood by a factor
of |Σ|k.

Another approach to compress the neighborhood is to decrease the size of the
alphabet. This can be achieved through mapping of the original alphabet Σ to a
smaller (reduced) alphabet σ via a hash function h(c). Assume that σ = {0, 1};
h(c) is equal to 0 for English letters from a to m, and is 1 for letters from n to
z. Note that characters 0 and 1 can be considered as special wildcard characters
that represent regular expressions [a-m] and [n-z], respectively.

In our example, the reduced string h(find) is equal to 0010. The full neigh-
borhood of the string 0010 has 14 unique elements, which is much smaller
than the full neighborhood of the original string find. One should now be con-
vinced that generating a wildcard/reduced alphabet neighborhood entails signif-
icant performance improvements, if we can devise algorithms to satisfy wildcard
queries efficiently. In the following subsections, we discuss such algorithms.

2.2 A Generalization of the Mor-Fraenkel Method

In the Mor-Fraenkel method, wildcard queries are answered with a help of dele-
tion indices. Deletion indices store deletion neighborhoods generated at index
time. Consider an example, where find is a pattern string, mind is a dictionary
string, and k = 1. Strings find and mind differ by one substitution. Further-
more, the string ?ind from the wildcard one-neighborhood of the pattern find

matches the dictionary string mind.
To find all dictionary words that differ from find only in the first letter, it

is sufficient to memorize all strings obtained by deletion of the first character
in a special index. At search time, we simply remove the first character of the
pattern string p and retrieve all strings from the special index that match the
shortened pattern exactly. In what follows, we describe a generalization of this
idea. Note that Bocek et al. [3] provide an alternative description of the same
approach as well as its efficient implementation (FastSS).

The indexing algorithm of the generalized Mor-Fraenkel method iterates over
dictionary strings and generates their k-deletion neighborhoods, i.e., all strings
obtainable from dictionary strings through k deletions. Consider a residual string
s′ = ∆τ1(∆τ2(. . . (∆τls) . . .) = ∆τl+l−1(. . . (∆τ2−1(∆τ1s)) . . .) obtained from a
dictionary string s through deleting characters s[τ1], s[τ2], . . . , s[τl] in positions
τ1 ≤ τ2 ≤ . . . ≤ τl (l ≤ k). For each residual string s′, we memorize a triple
(s′, Ds, Cs), where Cs = (s[τ1], s[τ2], . . . , s[τl]) stands for deleted characters and
Ds = (τ1, τ2 − 1, . . . , τl − l + 1) represents their positions in the original string
s. These triples, called deletion lists, are kept in an index. This index allows us
to search for triples by their first elements, i.e., by residual strings.

We note the following:

– Given a triple (s′, Ds, Cs), the original string s can be reconstructed by
inserting characters Csi at positions Ds

i into the string s′ in the decreasing
order of i.
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– Ds is a multiset, i.e., a set that may contain repeated elements. A multiset
is characterized by its indicator function. The value of the multiset indicator
function 1A(e) is equal to the number of times the element e repeats in A.
All multiset operations can be expressed in terms of indicator functions. In
particular, the indicator of the intersection is equal to min(1A(e),1B(e)) and
|A| (the cardinality of A) is equal to

∑
e∈A 1A(e).

At search time, we generate the k-deletion neighborhood of the pattern string
p. Thus, we obtain pairs (p′, Dp), where p′ is a residual string obtained from p
by deleting characters p[ρ1], p[ρ2], . . . p[ρm] in positions ρ1 < ρ2 < . . . < ρm and
Dp = (ρ1, ρ2 − 1, . . . , ρm −m+ 1) is a multiset that represents ρi.

Next, we retrieve all dictionary triples (s′, Ds, Cs) (using the exact-search
index) that satisfy the conditions:

p′ = s′

|Ds|+ |Dp| − |Ds ∩Dp| ≤ k (1)

Finally, dictionary strings are reconstructed from triples satisfying Condition
(1).

2.3 A Compact Version of the Mor-Fraenkel Method

Explicit indexing of triples (s′, Ds, Cs) – defined in Subsection 2.2 – requires a
lot of RAM. A more space efficient version was proposed by Belazzougui for the
case k = 1. He suggested to enumerate all residual strings s′ using a minimal
perfect hash function [2]. The minimal perfect hash function f(s) maps m strings
to integer values from 1 to m without collisions. During indexing, we convert
triples (s′, Ds, Cs) into triples (f(s′), Ds, Cs) and index the latter using first
elements (i.e., values of the perfect hash function) as keys.

The retrieval algorithm is almost identical to that described in Subsection
2.2. At search time, we compute all pairs (p′, Dp), where p′ is a residual string
obtained from p by deleting up to k characters. Positions of deleted characters are
defined by the multisetDp. Then, we retrieve all dictionary triples (f(s′), Ds, Cs)
such that:

f(s′) = f(p′)

|Ds|+ |Dp| − |Ds ∩Dp| ≤ k. (2)

Note that the first element of the triple is the hash value of the unknown string
s′. If s′ = p′, the triple represents a dictionary string s such that ED(p, s) ≤ k.
In this case, s can be obtained by inserting Csi into p′ at positions Ds

i (in the
decreasing order of i). However, if s′ 6= p′, the triple represents a false positive.

Two cases are to be considered. In the first case, the residual pattern string
belongs to the set of residual dictionary strings computed during indexing. By
the definition of the perfect hash function, f(s′) = f(p′) implies s′ = p′. Thus,
the retrieved triple represents the dictionary string s such that ED(p, s) ≤ k.
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The string s can be recovered from the residual pattern string p′, the multiset
Ds, and the vector Cs as described previously.

In the second case, p′ is not a residual dictionary string. Thus, p′ 6= s′. This
case signifies a false positive. As noted by Belazzougui, it can be detected by
constructing the string s′′ from {p′, Ds, Cs} as described previously and checking
whether the constructed string belongs to the dictionary.

If s′′ is a dictionary string, then all the triples satisfying Condition (2) define
dictionary strings s such that ED(p, s) ≤ k. If the constructed string does not
belong to the dictionary, none of the triples satisfying Condition (2) represent
a dictionary string s such that ED(p, s) ≤ k. Thus, checking whether a recon-
structed string s′′ belongs to the dictionary has to be done only once for every
residual pattern string p′.

To obtain a compact index of deletion lists, Belazzougui recommends to store
triples in the increasing order of hash values f(s′). For each hash value i, the
offset of the first triple (f(s′), Ds, Cs) such that f(s′) = i is stored in the offset
table T (i). Because the offsets in T (i) is a sequence of non-decreasing integer
values, one can efficiently compress T (i). An experimental survey of methods for
compact representation of directly addressable ordered sets is given by Brisaboa
et al. [6]. In our work, we rely on a simple folklore sampling method, which
allows us to compress the offset table T (i) to about 30-50% of its original size.

To conclude this subsection, we note that in our implementation the perfect
hash functions are computed using the CMPH library [4].1 For our data, CMPH
fails to generate a perfect hash function when the number of residual strings
is large (approximately 100M). To overcome this difficulty, we employ a two-
level scheme, where residual strings are divided into shards using a regular hash
function. Then, we create a perfect hash function separately for each shard. It is
noteworthy, that this approach allows one to construct a perfect hash function
for arbitrarily large sets of strings. In addition, dividing the index into shards
simplifies updates.

2.4 Reduced Alphabet Neighborhood Generation

The indexing algorithm of the reduced alphabet neighborhood generation em-
ploys a hash function h(c) to convert original dictionary strings si into their
projections h(si), which are strings in the reduced alphabet. Then, dictionary
strings are organized into buckets based on the values of h(si) so that each bucket
contains strings with same values of h(si). This allows us to efficiently retrieve
original strings si using their projections h(si) as search patterns.

At search time, the pattern p is converted into r = h(p). Then, we create a
full k-neighborhood of the reduced pattern r (using characters from the reduced
alphabet σ). All dictionary strings s such that ED(p, s) ≤ k are contained in
buckets corresponding to strings from the generated neighborhood. This step
provides a list of candidate strings. Because the size of the reduced alphabet is

1 It can be downloaded from http://cmph.sourceforge.net/

http://cmph.sourceforge.net/
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(much) smaller than that of the original alphabet, computation of the reduced
alphabet requires little time.

In the second step, the candidate strings are compared with the original
pattern. A naive implementation of the verification step involves computation of
the Levenshtein distance. A more efficient approach is to generate an additional
wildcard neighborhood, i.e., the wildcard neighborhood of the original pattern.

The generation of two neighborhoods is synchronized in the following manner:

– If we substitute the i-th character of the reduced pattern r, we replace the
i-th character of the original pattern p with the wildcard symbol ?;

– Similarly, if we insert a character at position i of r, we insert the wildcard ?

at position i of p;
– If we delete the i-th character of r, we also delete the i-th character of the

original pattern p.

Note that this procedure generates pairs of patterns that have same lengths.
Consider the binary reduced alphabet and the hash function h(c) defined

in Subsection 2.1. Assume that the pattern p = ind is a misspelled version
of the dictionary string find. Then, r = h(ind) = 010 and h(find) = 0010.
The reduced-alphabet one-neighborhood of r contains the string 0010, which
is obtained by inserting 0 into the first position of the reduced pattern. The
respective element from the “parallel” neighborhood is equal to ?ind. We use
0010 to identify a bucket that contains the string find. Then, the element ?ind
of the second neighborhood is used to compare ind with find. For this purpose,
we treat ?ind as a simple regular expression where ? matches any alphabet
character. Whenever a dictionary string in the bucket matches p within k =
1 errors, it should match such regular expression exactly. This match can be
verified efficiently (in time proportional to the length of s) without computing
the Levenshtein distance.

2.5 A Hybrid of the Mor-Fraenkel Method and the Reduced
Alphabet Neighborhood Generation

The Mor-Fraenkel method can be blended with the reduced alphabet neigh-
borhood generation. The indexing process of this hybrid algorithm starts with
creating a reduced alphabet index outlined in Subsection 2.4: The dictionary
strings si are divided into buckets based on their projections h(si) (to the set
of reduced alphabet strings). Projections h(si) are stored in the form of a dic-
tionary. In the second indexing step, this dictionary is indexed using a compact
version of the Mor-Fraenkel method (see Subsection 2.3). One advantage of this
approach is that triples (f(s′), Ds, Cs) can be readily compressed. For example,
in our experiments we use |σ| = 8. Thus, each element of Cs can be encoded
with 3 bits.

The search algorithm is divided into two steps and involves the parallel gen-
eration of two wildcard neighborhoods. This first step of the search algorithm is
a modification of the Mor-Fraenkel search method. As described in Subsection
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2.2, we create residual patterns {p′} by applying up to k deletions. Positions of
deleted characters associated with {p′} are defined by multisets {Dp}. In addi-
tion, we create residual patterns {r′} by deleting characters from the reduced
pattern r = h(p) in the same positions as in {p}.

For each r′, we retrieve memorized triples (f(s′), Ds, Cs) such that f(r′) =
f(s′) and |Ds|+ |Dr′ | − |Ds ∩Dr′ | ≤ k (s′ is a string in the reduced alphabet).
Then, we construct the string s′′ by inserting characters Cs into the residual
string r′ in positions Ds

i in the decreasing order of i. The result is a string r′′.
We also modify the residual string p′, obtained from the non-reduced pattern p.
To this end, wildcard character ? is inserted into positions Ds

i in the decreasing
order of i. The result is the pattern p′′ that contains zero or more wildcards.
The string r′′ defines a bucket with candidate strings, which are exhaustively
compared with the simple regular expression defined by p′′.

2.6 Associativity Consideration

It can be seen that methods defined in Subsections 2.4-2.5 can handle associated
data by simply storing it in the buckets (or pointers thereto). Because both
methods involve full scanning of the buckets with candidate strings, retrieval of
associated data does not have a performance penalty.

However, the compact version of the Mor-Fraenkel method that uses perfect
hashing is capable of retrieving only strings themselves. Retrieval of associated
data can be supported in two ways. In a more space efficient approach, associated
data (or pointers thereto) are stored in the dictionary. Then, for every string
generated during the verification step, we have to search the dictionary for an
exact match, even though we already know that the generated string must belong
to the dictionary. According to our experiments, these additional lookups almost
double retrieval time. In a second approach, compressed string identifiers are kept
in the deletion lists. This requires an approximately two times larger index, but
retrieval time will remain the same.

3 Experiments

3.1 Experimental Setup

Experiments are carried out in a single-thread mode on a laptop with a 2 Ghz
Intel CoreDuo Processor, 3 Gb of RAM, and 1 Mb of L2 cache. This laptop is
running a 32-bit Linux (kernel version 2.6.x). Time is reported in milliseconds.

We use some of the data sets published by Boytsov [5]: synthetic English
dictionaries, frequent words from the ClueWeb09 collection, and DNA sequences
extracted from the human genome (of length 11). Each type of the data set has
5 dictionaries with 0.2M, 0.4M, 0.8M, 1.6M, and 3.2M strings. We created new
sets of search patterns containing up to 10K, by applying up to k random edits to
dictionary strings. These larger test sets allow us to reduce sampling uncertainty
in calculating average retrieval times.
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All search methods are implemented in C/C++ with correctness of imple-
mentation verified by black-box testing. We index a small dictionary and gener-
ate a set of strings by applying i ≤ k random edits to dictionary words. Then,
we check if the algorithm is capable of finding original dictionary words using
modified strings as search patterns.

In our experiments, we determine how the following performance character-
istics depend on k: the average in-memory retrieval time and the index size. To
estimate index memory requirements, we measure the amount of space occupied
by a serialized version of the index. For FastSS this method produces a biased es-
timate: we correct it through multiplying by 2, which is a coefficient empirically
determined using the Unix utility top.

3.2 Evaluated Methods

We compared the performance of super-linear indices with several methods, in
particular with the fastest methods evaluated by Boytsov [5]. We benchmarked
the following algorithms:2

– FastSS [3], which is straightforward generalization of the Mor-Fraenkel method
(see Subsection 2.2). Deletion lists are not compressed.

– A new implementation of the Mor-Fraenkel method with compact indices
(see Subsection 2.3). It employs the perfect hash library CMPH [4].3 We
compress deletion lists as follows: for natural language data, each deleted
character as well as its position is encoded using 6 bits. For DNA-data, a
deleted character together with its position occupy 8 bit.

– The reduced alphabet neighborhood generation implemented by Boytsov [5]
(see Subsection 2.4). In the case of ClueWeb09 data, we use |Σ| = 5 and
|Σ| = 3, otherwise. This method works well only for large and medium
alphabets and is not used for the DNA data set.

– The full neighborhood generation (see Subsection 2.1), which is used only
for the DNA data set.

– The hybrid of the reduced alphabet neighborhood generation and the Mor-
Fraenkel method with |Σ| = 8 (see Subsection 2.5). Characters and their
positions in deletion lists are encoded using 3 and 5 bits, respectively. For a
few patterns longer than 31−k character, we resort to the reduced alphabet
neighborhood generation.

– The FB-trie proposed by Mihov and Schulz [16] (Boytsov’s implementation
[5]). It employs a pair of tries: a regular one and a trie built over reversed
strings. At search time, the method looks for the original pattern in the reg-
ular trie, and for the reversed pattern in the trie built over reversed strings.
A first part of either the original or the reversed pattern should match a
trie prefix with at most bk/2c < k errors. This is a well-known pattern
partitioning approach [13,9].

2 The source files are available at: http://boytsov.info/src/.
3 http://cmph.sourceforge.net/

http://boytsov.info/src/
http://cmph.sourceforge.net/
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Fig. 1. Relationship between the average retrieval time (in ms) and the index size (log-
scale on both axes). Each series of connected dots represents results for dictionaries of
at most five sizes: 0.2M, 0.4M, 0.8M, 1.6M, and 3.2M (from left to right).
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– Two modifications of q-gram methods. One is implemented by Boytsov [5]
and another is provided with the Flamingo package written by Behm et al.
[1]. For brevity, we report only the best time achieved by one of the q-gram
methods.

3.3 Experimental Results

Figures 1 and 2 shows the relationship between the average retrieval time (in
milliseconds) and the index size. Each series of connected dots represents results
for a set of dictionaries of increasing size. In most cases, the dots from left to
right correspond to the dictionaries of five sizes: 0.2M, 0.4M, 0.8M, 1.6M, and
3.2M. Some connected series contain fewer dots, because larger indices do not
fit into RAM. Note that in the case of associative searching, either the average
retrieval time or the index size of the Mor-Fraenkel method based on perfect
hashing would be twice of that presented in Figures 1-2. The other methods
can support associative searching without a penalty in performance or memory
requirements (see Subsection 2.6).
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Fig. 2. Relationship between the average retrieval time and the index size (log-scale
on both axes). Each series of connected dots represents results for dictionaries of at
most five sizes: 0.2M, 0.4M, 0.8M, 1.6M, and 3.2M (from left to right).

One can immediately see that all three modifications of the Mor-Fraenkel
method (which includes FastSS) are more efficient than other methods in almost
all cases. In particular, they are:
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– about two orders of magnitude faster than q-gram based methods, which are
often considered as good benchmarks;

– up to an order of magnitude faster than the FB-trie.

This efficiency comes at the price of huge indices and long indexing times (up
to one hour for the variant based on perfect hashing). Consider the panel in
Figure 1 corresponding to the case of k = 1. The second dot in the FastSS
series represents the index for the second largest dictionary (0.4M strings). It
has the size 100MB, which is larger than a q-gram index built for the dictionary
with 3.2M strings. However, the index size of the Mor-Fraenkel method based
on perfect hashing is only 8MB, or about 1/10 of the FastSS index. Taking into
account that about 25% reduction is achieved through lightweight compression
of deletion lists (both characters and positions occupy 6 bits each), we obtain
that the use of perfect hashing alone lead to about 8-fold reduction in index
sizes as compared to straightforward memorization of deletion neighborhoods.
For larger k the difference is approximately 4-fold.

One can also see that the hybrid of the Mor-Fraenkel method and the reduced
alphabet neighborhood generation is not a very practical method. Even though
the hybrid method significantly improves over the reduced alphabet neighbor-
hood generation (especially for larger k), it is up to an order of magnitude slower
than the Mor-Fraenkel method based on perfect hashing (see k = 4, ClueWeb09
data). In that, the hybrid method has equivalent space requirements to those of
the Mor-Fraenkel method.
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Fig. 3. Relationship between the average retrieval time (in ms) and pattern length
(log-scale on time axis)

Consider the case of DNA data. For small dictionaries, the variants of Mor-
Fraenkel methods are among the fastest algorithms. As the number of dictionary
strings grows, performance of these methods deteriorates. For k ≤ 2, it becomes
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equivalent to that of full neighborhood generation. We believe that this fact
can be explained by a density effect (see Section C.3.3 in the paper by Boytsov
[5]). In our case, the number of unique 11-character DNA sequences is about
4M. The largest dictionary with 3.2M entries contains most of them and, thus,
is very dense. Consequently, the algorithm has a low filtering efficiency. Note
that for k ≥ 3 and DNA data, the Mor-Fraenkel method outperforms the full
neighborhood generation, but it has the equivalent performance to that of the
FB-trie.

We conducted an additional experiment to study the relationship between the
average retrieval time and the pattern length. To this end, we use the smallest
ClueWeb09 dictionary (0.2M strings) and patterns with length from 4 to 15.
According to Figure 3, the average retrieval time of all Mor-Fraenkel methods
first decreases until n ≈ 8. Afterwards, it increases monotonically. The FB-trie
utilizes pattern partitioning, which is essentially filtering by word halves. The
longer is the pattern, the better is filtering efficiency. Consequently, the average
retrieval time of the FB-trie decreases monotonically with n. For long patterns,
k = 1, and k = 3, performance of Mor-Fraenkel methods is equivalent to that
of the FB-trie. Thus, Mor-Fraenkel methods would be most useful for short and
medium-size patterns.

4 Conclusions

Mor-Fraenkel methods have tremendous space requirements: The index size
grows exponentially with k. This also applies to FastSS, which belongs to the
family of Mor-Fraenkel methods. We have empirically confirmed that space re-
quirements can be 4-8 times lower if perfect hashing is employed (the idea pro-
posed by Belazzougui [2]). Given that typical servers are now equipped with
8-32 Gb of memory, this method is applicable to natural language dictionar-
ies containing several million entries. At the same time, the efficiency of the
Mor-Fraenkel method based on perfect hashing is similar to that of the straight-
forward implementation of the Mor-Fraenkel method, which indexes deletion
neighborhoods directly. Both the straightforward and perfect-hash implementa-
tions outperform our fastest benchmarks in most cases.

Mor-Fraenkel methods work best for small and medium patterns (at most 10
characters). For longer search strings one should employ a pattern partitioning
strategy similar to the one used by Karch et al. [12]. However, it remains to be
determined which pattern partitioning strategy would be most efficient. Another
open question is whether (and to what extent) one can improve performance of a
trie-based method through precomputing wildcard neighborhoods at index time.
One such algorithm was proposed by Cole et al. [7], but we are unaware of any
space efficient implementation of this (or similar) method.
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