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Approximate String Searching

 Dictionary version of the problem:

● Set of strings called dictionary W
● Pattern string p
● Threshold distance k
● Find all strings from W within distance k from 

the search pattern p
● Focus on the Levenshtein distance



Super-Linear Indices

● Indexing of deletion neighborhoods allows 
one to achieve very short times

● Index size grows exponentially with k

● One needs methods to decrease space 
requirements



String
k-Neighborhoods

Simple idea from 50-60s:

● Generate strings p' by k insertions, deletions, 
substitutions, applied to pattern p.

● Search p' in W.

http://www.stanford.edu/~learnest/spelling.pdf
http://www.stanford.edu/~learnest/spelling.pdf


k-Neighborhood Types

● Full neighborhood

● Partial and wildcard neighborhood
○ Deletion neighborhood
○ Reduced-alphabet neighborhood

● Condensed neighborhoods (only feasible to 
search for short substrings in a text over a 
small alphabet, e.g. a DNA sequence)



Full k-Neighborhoods
    Example: p=find k=1

1. The original string find
2. 4 strings obtained by one deletion
3. 5×26 strings obtained by one insertion
4. 4×25 strings by one substitution
5. Ignore few duplicates

Problem: full neighborhood is huge (in our 
case 231 strings):

O(|p|k|Σ|k)



Wildcard k-Neighborhood
(Approach 1)

? is a wildcard that matches any symbol.
1-Neighborhood has only 13 strings:

1. find
2. ind, fnd, fid, fin
3. ?find, f?ind, fi?nd, fin?d, find?
4. ?ind, f?nd, fi?d, fin?

Problem: how to search for wildcard patterns 
efficiently?



Approach 1:
Focus of this Presentation

● A solution to efficient retrieval of strings with 
wildcards symbols ? is inspired by the 
dynamic programming (DP) algorithm

● DP algorithm doesn't compute distance 
directly

● Instead it computes the cost of an optimal 
alignment



Optimal Alignment
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Positions of Deleted Chars:
Adjusted by Preceding Dels

Multi-set A for the 1st word:     
(1) → (1)

Multi-set B for the 2d word:
(1,2)  → (1,1)



Positions of Deleted Chars
Define Levenshtein Distance

Edit distance being at most k is equiv.: 

|A| + |B| − |A ∩ B| ≤ k

In our example: 
Levenshtein(find,grind) = 2 + 1−1 = 2



Straightforward Indexing 

● Generate residual strings (obtained by up 
to k deletions)

● Keep multi-sets that represent deleted chars

● Index words and multi-sets using residual 
strings as keys (via a regular hash index)



 Dictionary: mind, bind

0 ind:  (1, mind) (1, bind) 
mnd:  (2, mind)

1 mid:  (3, mind) 
min:  (4, mind)

2 bnd:  (2, bind)
bid:  (3, bind)

3 bin:  (4, bind)

Regular Hash (k=1)



Somewhat Similar to 
Locality Sensitive Hashing

● There are several hash functions hi()

● Strings s are indexed based on hash values 
hi(s)



Retrieval Algorithm (k=1)

find

(1, ind) (2, fnd) (3, fid) (4, fin)



Retrieval Algorithm (k=1)

find

(1, ind) (2, fnd) (3, fid) (4, fin)

(1, mind) (1, bind) 



Checking Levenshtein Distance 
(k=1)

A = (1)
B = (1)

Using the formula (slide 14) we obtain that:

|A| + |B| − |A ∩ B| = 1 + 1 − 1 = 1 ≤ k 



Advantages

● Only O(|p|k) buckets are tested
● Buckets are scanned sequentially
● No need to compute edit distance
● Hence, method is very fast

The Disadvantage
● Index size is huge: O(Mk), where M is a max 

string length
● Should be precomputed for all k 



     Dictionary: mind, bind

0 ind (1, m) (1, b)

1 mnd (2, i)

2 mid (3, n)

3 min (4, d)

4 bnd (2, i)

5 bid (3, n)

6 bin (4, d)

Compact Index (k=1)
Based on Perfect Hashing



Retrieval Algorithm (k=1)

find

(1, ind) (2, fnd) (3, fid) (4, fin)



Retrieval Algorithm (k=1)

find

(1, ind) (2, fnd) (3, fid) (4, fin)

(1, m)      (1, b) 



Do These Records
Represent Dictionary Strings?

● We have to restore original strings by re-
insertion of characters m and b

● Check if reconstructed strings belong to W

● Do it only once for each bucket!



Evaluation Results:
Benchmarks

1. Compact Mor-Fraenkel index (this paper)
2. Straightforward Mor-Fraenkel index  (FastSS by 

Bocek et al [2007])
3. Reduced alphabet neighborhood generation 

(Approach 2)
4. Hybrid of compact Mor-Fraenkel index and 

reduced alphabet neighborhood generation
5. Q-gram indices [Behm et al 2010, Boytsov 2011]
6. FB-trie: a pair of tries built over original and 

reversed strings [Mihov and Schulz 2004].



Evaluation Results



Summary of Results
● MF-methods work best for natural language 

data, where they outperform other methods

● Index sizes are 4-8 times smaller with perfect 
hashing

● Retrieval times are comparable (for regular 
and perfect hashing)

● Associative Searches Involve a Tradeoff 
(larger index or longer retrieval times)



Compact Mor-Fraenkel Index:
Is it Straightforward?

● No. One needs to generate perfect hash for 
dozens or even hundreds millions of strings

● The library CMPH [Botelho 2008] can handle 
this task, but not always: for ClueWeb09 
strings it fails at around 100M mark.

● Two-level hashing scheme fixes this problem



Extensions to generic spaces?

● Perhaps, we can use it for vector spaces.

● Create a VA-file [Webber et al 1998] and 
index subvectors of approximated vectors.

● It is possible that this approach has already 
been implemented by somebody. If not, it is 
worth trying.



Thank you!
Questions are welcome!



Appendix



Neighborhood Generation
Search Complexities

● α and β depend on the dictionary "density"
● In the worst case, the last 2 methods can be 

worse than full neighborhood generation.

Full neighborhood O(|p|k|Σ|k)
Reduced-alphabet 
neighborhood

O(|p|k|σ|k(1+α)),
σ is reduced alphabet

Deletion 
neighborhood

O(|p|k(1+β))



Historical Notes
● Indexing of deletion neighborhoods was 

originally proposed by Mor and Fraenkel  for 
k=1 in 1982. The generalization for k>1 was 
independently described by Bocek et al. 
[2007] and Boytsov [2011].

● The scheme based on perfect hashing was 
described by Belazzougui [2009] for k=1. To 
my best knoweledge, it has been never 
tested before.



Optimal Alignment:
Interpretation with Wildcards

? ? I N D

G R I N D



Wildcard k-Neighborhood
(Approach 2)

0 denotes  [a-m], 1 denotes [n-z].
Hash function h(s) reduces original strings into 
sequences of ones and zeros:

h(find) = 0010

The full 1-neighborhood of 0010 has only 14 
unique elements. 

Problem: how to index and search efficiently?
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