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Abstract. We present a new similarity search library and discuss a
variety of design and performance issues related to its development. We
adopt a position that engineering is equally important to design of the
algorithms and pursue a goal of producing realistic benchmarks. To this
end, we pay attention to various performance aspects and utilize modern
hardware, which provides a high degree of parallelization. Since we focus
on realistic measurements, performance of the methods should not be
measured using merely the number of distance computations performed,
because other costs, such as computation of a cheaper distance function,
which approximates the original one, are oftentimes substantial. The
paper includes preliminary experimental results, which support this point
of view. Rather than looking for the best method, we want to ensure
that the library implements competitive baselines, which can be useful
for future work.
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1 Introduction

A lot of domains, including content-based retrieval of multimedia, computa-
tional biology, and statistical machine learning, rely on similarity search meth-
ods. Given a finite database of objects {oi}, a search query q and a dissimilarity
measure (which is typically represented by a distance function d(oi, q)), the goal
is to find a subset of database objects sufficiently similar to the query q.

Two major retrieval tasks are typically considered: a nearest neighbor and a
range search. The nearest neighbor search aims to find the least dissimilar object,
i.e., the object at the smallest distance from the query. Its direct generalization
is the k-nearest neighbor (or the k-NN) search, which looks for the k most closest
objects. Given a radius r, the range query retrieves all objects within a query
ball (centered at the query object q) with the radius r, or, formally, all the
objects {oi} such that d(oi, q) ≤ r.



2 Leonid Boytsov and Bilegsaikhan Naidan

The queries can be answered either exactly, i.e., by returning a complete re-
sult, or, approximately, e.g., by finding only some nearest neighbors. The exact
versions of near neighbor and range search received a lot of attention. Yet, in
many applications exact searching is not essential, because the notion of simi-
larity, e.g., between two images, is not specified rigorously. Applying an exact
retrieval method does not necessarily mean that we will find the image that is
most similar to a query from a human perspective. Likewise, a k-NN classifier
may perform well even if the search method does not produce a precise and/or
a complete result [4,31].

Search methods for non-metric spaces are especially interesting. This domain
does not provide sufficiently generic exact search methods. We may know very
little about analytical properties of the distance or the analytical representation
may not be available at all (e.g., if the distance is computed by a black-box device
[35]). Hence, employing an approximate approach is virtually unavoidable.

Approximate search methods are typically more efficient than exact ones.
Yet, it is harder to evaluate them, because we need to measure retrieval speed
at different levels of recall (or any other effectiveness metric). To the best of our
knowledge, there is no publicly available software suit that (1) includes state-of-
the-art approximate search methods for both non-metric and metric spaces and
(2) provides capabilities to measure search quality. Thus, we developed our own
test framework and presented it in this paper.

1.1 Related Work

There is large body of literature devoted to exact search methods in metric
spaces, which are thoroughly surveyed in the books by Faloutsos [12], Samet
[32], and Zezula et al. [40] (see also a survey by Chávez et al. [5]). Exact meth-
ods have a limited value in high-dimensional spaces, which exhibit phenomena
of the empty space [33] and measure concentration [5]. Experiments show that,
as the dimensionality increases, every nearest neighbor search method degrades
to sequential searching [39]. This is commonly known as the “curse of dimen-
sionality”. In that, methods, which are allowed to return inexact answers, are
less affected by the curse [30]. For a discussion of these phenomena, we address
the reader to the papers of Indyk [20] and Pestov [30].

To answer the approximate nearest neighbor queries, Indyk and Motwani [21]
as well as Kushilevitz et al. [25] proposed to use random projections. The locality
sensitivity hashing (LSH) is one of the most well-known implementations of
this idea [21,20]. The LSH indexing uses several hash functions, such that a
probability of a collision (hashing to the same value) is sufficiently high for close
objects, but is small for distant ones.

The LSH works best in Lp spaces where p ∈ (0, 2]. There exists an extension of
the LSH for an arbitrary metric space [28] as well as for symmetric non-metric
distances [27]. Performance of the LSH depends on the choice of parameters,
which can be tuned to fit the distribution of a data set [7].

Most exact search methods can be transformed into approximate ones by
applying an early termination strategy. In particular, Zezula et al. [41] demon-
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strated that this approach works well for M-trees. One of the most efficient strate-
gies relies on density estimates for a distribution of distances [41,1]. The density-
based approach to space pruning was also discussed by Chávez and Navarro [6]
(in the context of pivoting methods), who called it “stretching” of the triangle
inequality.

Let us consider a metric space, where we selected a single reference point π,
known as pivot. The pivot is used to prune space during searching. Imagine that
we computed a distance from the pivot π to every other data point. Then, points
are sorted in the order of increasing distances from π. The median distance is
m and points are divided into two buckets. If the distance from a point to π
is smaller than m, the point is put into the first bucket. Points with distances
larger than (or equal to) m are placed into the second bucket.

Let q be a query point and r be a radius of the range query. If r < m−d(π, q),
an answer can be only in the first bucket. If r ≤ d(π, q)−m, an answer can be
only in the second bucket. Otherwise, the answer can be in both buckets and
no pruning is possible (without risking to miss an answer). In the “stretched”
triangle inequality, we choose constants α1, α2 ≥ 1.3 If r < α1(m− d(π, q)), we
check only the left bucket. If r < α2(d(π, q)−m), we check only the right bucket.
This is an example of an oracle procedure that defines a pruning algorithm
of a pivoting method. Note that (1) it is possible to learn the oracle in both
metric and non-metric spaces, (2) we can learn a pivot-specific oracle, instead
of the global one, (3) most existing methods designed for metric spaces can
be converted into non-metric search methods by simply replacing the triangle-
inequality based pruning method with a search oracle. We plan to present these
learning approaches in detail elsewhere.

In a recent survey [36], Skopal and Bustos discussed several types of non-
metric access methods, which we divide into the following categories: (1) projec-
tive and lower/upper bounding approaches, (2) methods that prune the space
using properties other than the triangle inequality (e.g., the Ptolemaic inequality
[26]), and (3) domain-specific methods. Inverted files are a classic domain-specific
algorithm applicable to high-dimensional, but sparse, vector spaces, where the
distance function is the cosine similarity (or a similar distance).

Jacobs et al. [22] review various projection methods and argue that a projec-
tion is not always feasible, for instance, when the similarity cannot be expressed
by a numeric distance function, or the distance function is not symmetric. In the
case of symmetric, non-negative, and reflexive distance, one can use the TriGen
algorithm [35], which applies a monotonic transformation to the distance func-
tion. Consider, e.g., the squared Euclidean distance, which is a (non-metric)
Bregman divergence. By taking the square root, we obtain the metric function.
Similarly, the TriGen algorithm allows one to convert a distance into a function
that satisfies the triangle inequality only approximately. In addition, it provides
control over the degree of approximation.

Chávez et al. [18] proposed a projective method, which is applicable to both
metric and non-metric spaces. The method, called the permutation index, selects

3 Chávez and Navarro [6] employed only one stretching constant.
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k pivots {πi} and for every data point o it creates a permutation of pivots: a
list where pivots are sorted in the order of increasing distances d(πi, o). Inde-
pendently, this method was invented by Amato and Savino [2], who additionally
proposed to index permutations using an inverted file.

To answer the query, the correlation is computed between the permutation
of the vector and the permutation of every data point. Then, all data points
are sorted in the order of ascending correlation values and a given fraction of
objects are compared directly with the query (by computing the distance in the
original space). Performance of the permutation index can be improved by using
incremental sorting [17] or by indexing permutations using an inverted file [2], a
permutation prefix tree [11], or a metric space index [14].

Bregman divergences is a class of non-metric distance functions. This diver-
gences include the squared Euclidean distance, the KL-divergence:

d(x, y) =
∑

xi log(xi/yi) (1)

and the Itakura-Saito distance:

d(x, y) =
∑

xi/yi − log(xi/yi)− 1. (2)

For the Bregman divergences, there exist two exact search methods. The Breg-
man ball tree (bbtree) [4], which recursively divides the space using two covering
Bregman balls at each recursion step, and a mapping method due to Zhang et
al. [42]. Both approaches use properties of Bregman divergences to lower/upper
bound distance values.

2 Methodology

2.1 Evaluation Approach

Performance of approximate methods is typically represented by a curve that
plots efficiency against effectiveness. Two most common efficiency metrics are
retrieval time and a number of distance computations. Additionally, we use the
improvement in efficiency (with respect to the single-thread sequential search
algorithm) and the improvement in the number of distance computations.

Recall is a commonly used effectiveness metric. It is equal to the fraction
of all correct answers retrieved. The relative error [41] is defined for a pair of
points o and õ, such that o is an exact and õ is an approximate answer. It
is simply a ratio of the distances d(õ, q) and d(o, q). The relative error can be
misleading, especially in high dimensional spaces. Due to high concentration
of measure, an increase in relative error can be very small, but the method can
return the 1,000th nearest-neighbor instead of the most closest one. This concern
was also expressed by Cayton [4]. Similarly, recall does not account for position
information and has the same issue [1].

Let pos(oi) represent a positional distance from oi to the query, i.e., the
number of objects closer to the query than oi plus one. In the case of ties, we



Engineering an Efficient and Effective Non-Metric Space Library 5

assume that the object with a smaller index is closer to the query. Note that
pos(oi) ≥ i. A relative position error is equal to pos(oi)/i and is more informative
than a relative distance error and/or recall. We average relative position errors
using the geometric mean [23].

Zezula et al. [41] proposed to use the average value of the inverse relative
position error (called the precision of approximation) as a performance metric
(m is the number of found objects):

1

m

m∑
i=1

i

pos(oi)
(3)

Amato et al. [1] suggested the metric that measures the absolute position
error. It is equal to:

1

m

m∑
i=1

pos(oi)− i
#of indexed points

(4)

Unfortunately, this metric produces results that are not comparable across col-
lections and result sets of different sizes. Consider an example of the result set,
where pos(oi) = 2i. The absolute position error is equal to:

1

m

m∑
i=1

2i− i
#of indexed points

=
0.5(m+ 1)

#of indexed points

We have no good explanation why the position error should grow with m, while
the relative position error and the degree of approximation remain constant (in
this case). Even worse, due to the large factor in the denominator of Eq. 4, the
computed error is generally very small. It is easy to make a wrong conclusion
that the algorithm works almost ideally, whereas, in truth, it provides a poor
approximation.

If we have a separate test set, testing is straightforward. Otherwise, we need
to randomly divide the original data set into indexable data and testing data.
This method is based on the assumption that distributions of test queries and in-
dexed data objects are similar. The random division should be repeated several
times (an approach known as bootstrapping), and performance metrics com-
puted for each split should be aggregated.

One may be tempted to select queries among indexed data objects, or, alter-
natively, to create test vectors by randomly perturbing the indexed data. Both
approaches are not ideal and can lead to overly optimistic or pessimistic results,
especially, in the case of the nearest neighbor searching. We experimented with
the Colors data set[13], indexed using the Vantage Point tree (VP-tree) [37]. If
we selected queries from the vectors that were already indexed, it took on av-
erage only 20 distance computations to find the query’s nearest neighbor. Since
the query and the found vector were identical, the pruning algorithm was unre-
alistically efficient. For the randomly selected held-out test data, it took about
6,000 distance computations to answer the nearest neighbor query! If we used a
query obtained by random additive (and uniform) perturbations of vector ele-
ments, the results depended on the amount of noise. In our experiment, we got
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800 distance computations in one case and 105 distance computations (i.e., the
algorithm degraded to the linear scan) in another.

We speculate that queries obtained by random perturbations can be useful
if the model of random perturbations fits data well. This assumption is ap-
parently reasonable for the Euclidean data, but additive transformations may
significantly change the histogram of distances in the case of the KL-divergence.
In one example, the application of the additive noise led to a 2x decrease in the
median distance value between two randomly selected vectors. The multiplica-
tive log-normal noise seemed to produce more realistic results, yet, additional
experimentation is needed to understand applicability of this approach.

2.2 Choice of Programming Language

C,C++, and Java are the three most popular general-purpose programming
languages[24]. 4 The authors are familiar with all three and considered them as
implementation languages. According to “The Computer Language Benchmarks
Game”, C and C++ have comparable performance.5 Major C/C++ compilers
(GNU C++ and Microsoft Visual C) support Single Instruction Multiple Data
(SIMD) commands, which allows one to compute distances more efficiently.

Yet, only C++ supports run-time and compile-time polymorphism. The new
C++ specifications standardize multi-threading and simplify the use of STL
containers (threads are not standardized in the pure C). 6 There is evidence,
including anecdotal experience of authors, that C++ allows programmers to be
more productive than does C [3]

Even though performance of Java sometimes matches performance of C++
[38,34], Java is generally 2-3 times slower than C or C++ [19,16]. Unlike C/C++,
there is no built-in support for the SIMD instructions [29]. Java objects are
heavy and programmers have to use parallel arrays as well as manual memory
management (e.g., reusing small objects) to work around this problem [10]. Thus,
writing “algorithmic-intensive” applications in Java may sometimes be harder
than in C++.

Because C++ is largely a superset of C, reusing the code already implemented
in the Metric Spaces Library would be straightforward. Yet, it is harder to port
C-code to Java. There are tools for seamless integration of C++ and R. In
particular, one can call R scripts directly from a C++ program [9]. All in all,
using the latest C++ compiler that implements the new standard is the most
appealing choice for us.

4 See, also http://www.langpop.com/ and http://spectrum.ieee.org/at-work/

tech-careers/the-top-10-programming-languages
5 According to at least this page: http://benchmarksgame.alioth.debian.org/u64/
benchmark.php

6 See http://www.open-std.org/jtc1/sc22/wg21/

http://www.langpop.com/
http://spectrum.ieee.org/at-work/tech-careers/the-top-10-programming-languages
http://spectrum.ieee.org/at-work/tech-careers/the-top-10-programming-languages
http://benchmarksgame.alioth.debian.org/u64/benchmark.php
http://benchmarksgame.alioth.debian.org/u64/benchmark.php
http://www.open-std.org/jtc1/sc22/wg21/
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2.3 Design

Our software was designed in the spirit of the Metric Spaces Library [13], but
there are multiple important differences. We have classes that represent an
Object, a Space, and an Index. The Space abstraction is necessary to encap-
sulate the computation of the distance. We can have multiple Space sub-classes
implementing different distance functions. In addition, the Space class provides
functionality to read objects from a file.

A distance can be integer-valued, real-valued, or represented by an arbitrarily
complex object (if, e.g., we compare objects using multiple criteria). Similarly
to the Metric Spaces Library, the same implementation can work with different
distance types (e.g., the VP-tree can be used with both the integer-valued edit
distance and with the real-valued L1 metric). This is effectively supported by the
compile-time polymorphism of C++ (templates). All implementations (including
indices for real-valued and integer-valued distances) co-exist in the same binary
and there is no need to update makefiles when a new method or a distance is
implemented.

The Object has an identifier and can store arbitrary data (of any type). When
necessary objects are transformed: One may need to reduce the dimensionality
or precompute the logarithms to accelerate evaluation of the KL-divergence (see
Section 2.4). Unlike the Metric Spaces Library, a distance function accepts point-
ers to the objects rather than object ids.

A Query object proxies distance evaluations during search time, which allows
us to get the average number of computations carried out by a search method
as well as to compute confidence intervals (even in the multi-threading testing
mode). It is still possible to access the distance function through a Space object,
but this should be done only at indexing time. If (due to programmer’s error)
an instance of the Index tried to access distance through the Space object, the
program would terminate. 7

There are two types of query classes and both classes have the Radius func-
tion. For the range queries, this function returns the constant value specified by
the user. For the k-NN queries, the value returned by Radius changes during the
search, because it represents the distance from the query to the k-th closest ob-
ject found so far. Because of this abstraction, it is often sufficient to implement
a single (template) function that handles both the range and the k-NN search.

The distance function can be non-symmetric, thus two types of queries (left
and right are possible). Currently, the framework directly supports only the left
queries (q is the second argument of the distance function). For some methods,
e.g., permutation-based approaches, right queries can be implemented by simply
swapping arguments of the distance function. Yet, a different distance function
as well as a transformation of original data may be necessary for Bregman di-
vergences [4]. We plan to address this issue in the future.

7 We actually have two versions of the Space distance function. The public, restricted,
version “knows” the current phase (indexing or searching). It terminates the program
if called during the search phase. The unrestricted, but private, function is accessible
by a Query object at search time, because the latter is a friend of Space.
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As explained in Section 1.1, one can use the concept of the search oracle to
convert metric access methods into non-metric ones. We implement two oracle
classes (one is based on sampling and another on “stretching” of the triangle
inequality). Currently, only the VP-tree can use the generic search oracle, but
we plan to embed the search oracle into other metric indices. In addition, most
tree-based methods in our library implement a simple early termination strategy,
where the search stops after visiting a given number of buckets.

There is a special function that governs the test process. It creates a Space

object, which loads a data set into memory, divides the data into testing and
training sets or loads a separate test set (see Section 2.1). Then, the Factory

creates instances of specific methods. Parsing of method-specific command line
parameters, though, is delegated to the Index. Search methods explicitly return
pointers/ids of found objects. Thus, we can verify methods’ correctness, as well
compute recall and other effectiveness metrics discussed in Section 2.1.

Because there are no exact search methods for generic non-metric spaces,
evaluation involves comparing a query object against every object in the database.
This expensive procedure can be optimized: When we test several different meth-
ods in a single session, we compute exact answers only once for each query object.
This is reasonably fast on our current data sets, but in the future we may mem-
orize answers, so that they can be re-used when we run multiple tests (using the
same data set).

The testing module saves evaluation results to a CSV-file and produces a
human readable report. Note that the plots in Section 3 are produced by a
Python script that read and processed such CSV-files.

We decided to focus on memory-resident indices. On one hand, modern
servers have plenty of memory and a typical high-performance search appli-
cation would keep most of its index in memory. On the other hand, we do not
have to implement serialization/de-serialization or, the code that searches data
stored on disk. This simplification allows us to be more productive coders. Our
implementations create essentially static indices from scratch. In the future, we
plan to consider incremental indexing approaches as well.

One purpose of serialization is to estimate space requirements. Yet, it is
possible to obtain an approximate size of the index by measuring the amount of
memory used by the program before and after the index is created (one should
also include memory to store data objects). There is an opinion that better
estimates can be achieved, if we compute the size of allocated memory ourselves,
by writing the special code that traverses the index and measures the size of
atomic index elements (such as vectors). Yet, we believe that this approach is
error prone.

2.4 Efficiency Issues

Even though some distance functions are expensive, it can be quite cheap to com-
pare two vectors using an Lp norm. Furthermore, it can be done even faster using
special SIMD instructions [15]. Currently, most x86 CPUs support operations
with 128-bit registers containing, e.g., 4 single-precision or 2 double-precision
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Table 1: The number of computations per second for optimized and unoptimized
distance functions.

128 elements 1024 elements

Distance L1 L2 Itakura-Saito KL-div. L1 L2 Itakura-Saito KL-div.

C++ (no logs) 9.6 · 106 9.1 · 106 1.9 · 105 5.3 · 105 1.2 · 106 1.2 · 106 2.4 · 104 6.7 · 104
SIMD (precomp. logs) 2.7 · 107 3.3 · 107 8.3 · 106 2.8 · 107 3.4 · 106 4.5 · 106 1.04 · 106 2.4 · 106

Note: vector elements are randomly, uniformly, and independently drawn from (0, 1]

numbers. Some CPUs already support operations with 256-bit registers, which
can process 8-element vectors of single-precision numbers.8 This fact is rather
well known, but it appears to be underappreciated. In addition, evaluation of
some distance functions can be accelerated at the expense of higher storage re-
quirements (or by dimensionality reduction). In the case of the KL-divergence
and the Itakura-Saito distance we can precompute and memorize logarithms of
vector elements.

According to Table 1, a single CPU core can carry out more than 30 mil-
lion computations of the Euclidean distance between two 128-element vectors
and more than 4 million distance computations between two 1024-element vec-
tors. In that, the efficient SIMD version spends about one CPU cycle per vec-
tor element. 9 The optimized versions of the L1, L2 and distances, which use
SIMD, are 3 times faster than pure C++ versions. The optimized versions of the
KL-divergence and of the Itakura-Saito distance are about 30-50 times as fast as
the original ones. In comparison, for a data set of dimensionality 128, the bbtree,
which is designed to search using the KL-divergence, is only 5 times faster than
sequential scan [4]. It should now be clear that (1) distance computations are not
necessarily expensive and (2) optimizing computation of the distance function
can be more important than designing data structures.

It has been claimed that a random memory access may take hundreds of CPU
cycles [8]. Yet, our experiments showed the cost of a random access on our server
to be only 60 cycles. Thus, reducing memory fragmentation may not necessarily
lead to substantial improvements in performance. In particular, storing vectors
of a VP-tree bucket in adjacent memory regions did not allow us to get more
than a 2x speedup. Perhaps, more importantly, the SIMD-based algorithms of
distance computations are so fast that communications with RAM can become
a major bottleneck in a multi-threading environment. Indeed, to sustain the
processing speed of one vector element per CPU cycle (see Table 1) we need
to read from memory at the speed of ≈ 12 GB/sec (one element is a 4-byte
single-precision number). Our server’s memory bandwidth of 20 GB/sec can be
exhausted with just two threads.

8 See, e.g., http://software.intel.com/en-us/avx
9 Reading unaligned data does not apparently hurt performance, even for SIMD op-

erations.

http://software.intel.com/en-us/avx
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Fig. 1: Improvement in efficiency and in the number of distance computations
for 1-NN search in L2.

3 Experiments

Experiments were carried out on a Linux server equipped with Intel Core i7 2600
(3.40 GHz, 8192 KB of L3 CPU cache) and 16 GB of DDR3 RAM (transfer
rate 20GB/sec). The code was compiled using GNU C++ 4.7 (optimization
flag -Ofast) and tested in a single-thread (using 1,000 queries). The library can
be downloaded from GitHub.10

The following collections were used:

1. Colors: 112-dimensional data set from the Metric Spaces Library [13];
2. Unif64: 64-dimensional vectors with elements generated randomly, indepen-

dently, and uniformly;
3. RCV-16 and RCV-128: 16- and 128-dimensional topic histograms [4];
4. SIFT: the normalized 1111-dimensional SIFT signatures [4].

We extracted the first 105 vectors from collections (1)-(3) and used the whole
collection (4), which contained only 104 vectors.

We carried out two series of experiments (both involving 1-NN search). In the
first series (see Fig. 1), we used collections Colors, Unif-64, and RCV-128. The
distance was Euclidean. We measured both the improvement in efficiency and
in the number of distance computations. The values of efficiency metrics were

10 https://github.com/searchivarius/NonMetricSpaceLib

https://github.com/searchivarius/NonMetricSpaceLib
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plotted against the relative position error. In the second experimental series (see
Fig. 2), we measured how the improvement in efficiency corresponded to the
relative position error. Two Bregman divergences were used: the KL-divergence
(see Eq. 1) and the Itakura-Saito distance (see Eq. 2). Implemented methods
included domain specific and permutation-based approaches as well the VP-tree.

– The VP-tree employed the search oracle that “stretched” the triangle in-
equality (see Section 1.1). Optimal stretching coefficients were found using
a simple grid search. We indexed a small database sample (≈ 1,000 vectors),
executed the 1-NN search for various values of stretching coefficients and
measured performance. Then, we selected coefficients resulting in the fastest
search at given recall values.

– Permutation-based approaches were: an improved permutation index with
incremental sorting [17], a permutation prefix tree [11], and the method
where permutations were indexed using a metric space index, as proposed
by Figueroa and Fredriksson [14]. Unlike Figueroa and Fredriksson, we used
an approximate method (the VP-tree that stretched the triangle inequality
using α1 = α2 = 2). In all cases, we used 16 pivots and the prefix length
was 4. The maximum fraction of the objects exhaustively compared against
the query depended on the data set and varied from 0.01 to 0.05. The mini-
mum fraction of the database objects to be scanned was 0.0002. The number
of candidate objects in the permutation prefix index varied from 1 to 24,000.

– The bbtree [4] is the exact indexing method for Bregman divergences. It was
extended by the early termination strategy, where the search stopped after
visiting a certain number of buckets (the number varied from one to 1,000).

– The multi-probe LSH is designed only for L2. We used the LSHKit imple-
mentation with the following parameters: H = 1017881, T = 10, L = 50.11

All methods, including the multi-probe LSH, relied on optimized distance func-
tions. The correlation function (Spearman’s rho) was also optimized and imple-
mented using SIMD instructions. The vectors in the buckets of the VP-tree and
bbtree were stored in contiguous chunks of memory (the bucket size was 50).

From Fig. 1 we learn that both the classic permutation method (without the
index over permutations) and the multi-probe LSH carried out fewer distance
computations than most other methods. Yet, they were generally outperformed
by the VP-tree and the methods that index permutations (using either the prefix
tree or the VP-tree). The reason is that exhaustive comparison of data-object
permutations against the permutation of the query vector is costly. In that, the
permutation index worked better for high-dimensional data (see Fig. 2f and 2c).
Again, we see that the number of distance computations is not necessarily a good
predictor of method’s performance. Yet, it may give insights into scalability of
methods with respect to the size of the data set and data dimensionality.

As can be seen from Fig. 2, we implemented strong baselines that worked well
in non-metric spaces with non-symmetric distance functions. Note that the bb-
tree, which was tailored to spaces with Bregman divergences, was outperformed

11 Remaining parameters were automatically computed by the LSHKit [7].
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Fig. 2: Improvement in efficiency of 1-NN search for the KL-divergences and
Itakura-Saito distance.

by the VP-tree (which is a generic method) in most cases. These are encourag-
ing results, but more work needs to be done. We plan to employ new complex
domains and implement additional search methods.
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and anonymous reviewers for helpful suggestions.
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13. Figueroa, K., Navarro, G., Chávez, E.: Metric Spaces Library (2007) Available at
http://www.sisap.org/Metric_Space_Library.html.

14. Figueroa, K., Fredriksson, K.: Speeding up permutation based indexing with in-
dexing. In: Proceedings of the 2009 Second International Workshop on Similarity
Search and Applications. SISAP ’09, Washington, DC, USA, IEEE Computer So-
ciety (2009) 107–114

15. Fredriksson, K.: Engineering efficient metric indexes. Pattern Recognition Letters
28(1) (2007) 75 – 84

16. Fulgham, B.: The computer language benchmarks game (2013) http://

benchmarksgame.alioth.debian.org/ [Last accessed on May 14th 2013].
17. Gonzalez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering

permutations. Pattern Analysis and Machine Intelligence, IEEE Transactions on
30(9) (2008) 1647–1658

18. Gonzalez, E.C., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering
permutations. Pattern Analysis and Machine Intelligence, IEEE Transactions on
30(9) (2008) 1647–1658

19. Hundt, R.: Loop recognition in C++/Java/Go/Scala. Proceedings of Scala Days
2011 (2011)

20. Indyk, P.: Nearest neighbors in high-dimensional spaces. In Goodman, J.E.,
O’Rourke, J., eds.: Handbook of discrete and computational geometry. Chapman
and Hall/CRC (2004) 877–892

21. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the thirtieth annual ACM symposium
on Theory of computing. STOC ’98, New York, NY, USA, ACM (1998) 604–613

22. Jacobs, D., Weinshall, D., Gdalyahu, Y.: Classification with nonmetric distances:
Image retrieval and class representation. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on 22(6) (2000) 583–600

23. King, G.: How not to lie with statistics: Avoiding common mistakes in quantitative
political science. American Journal of Political Science (1986) 666–687

http://www.akkadia.org/drepper/cpumemory.pdf
http://www.akkadia.org/drepper/cpumemory.pdf
http://blog.devexperts.com/millions-quotes-per-second-in-pure-java/
http://blog.devexperts.com/millions-quotes-per-second-in-pure-java/
http://www.sisap.org/Metric_Space_Library.html
http://benchmarksgame.alioth.debian.org/
http://benchmarksgame.alioth.debian.org/


14 Leonid Boytsov and Bilegsaikhan Naidan

24. King, R.S.: The top 10 programming languages [the data]. Spectrum, IEEE 48(10)
(2011) 84–84

25. Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient search for approximate nearest
neighbor in high dimensional spaces. In: Proceedings of the 30th annual ACM
symposium on Theory of computing. STOC ’98, New York, NY, USA, ACM (1998)
614–623
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