

Non-metric Space Library

Bileg Naidan, Leo Boytsov

Novelty

• Focus on approximate searching.

• Automatic evaluation (relative position error, recall,
number of points closer than NN-neighbor, etc).

• Focus on efficiency and real-world performance.

• Design influenced by Metric Spaces Library: yet, it was
reworked and simplified.

• New methods and data sets.

Efficiency: Programming Language

• C++ programs are fast.

• Legacy C-code can be ported rather
easily.

• It is easy to use Single Instruction
Multiple Data (SIMD) operations.

Efficiency: Not every Distance is Hard

• Many real data sets are (intrinsically) low-
dimensional.

• Inexact nature of searching often permits to

approximate a complex distance function
with a simple one.

• For example, through dimensionality
reduction techniques such as PCA or random
projections.

Efficiency: How Many Distances per Second?

128 elements, single thread, core-i7, 3.4 Ghz

• L1 9.6 millions

• L2 9.1 millions

• Itakura-Saito 190 thousand

• KL-divergence 530 thousand

Efficiency: How Many Distances per Second?

128 elements, single thread, core-i7, 3.4 Ghz

• L1 9.6 millions

• L2 9.1 millions

• Itakura-Saito 190 thousand

• KL-divergence 530 thousand

Slow
distances!

Efficiency: Optimizing Euclidian Distance

  
i

ii yxyxL
2

2),(

Let’s use SIMD instructions:
one instruction multiplies/adds 4 numbers!

Efficiency: Optimizing KL-divergence













i

i

i

i
y

x
xyxKL log),(

• Precompute logs at index time.

• In addition, use SIMD at query time.

i

i

ii

i

i yxxx loglog  

Efficiency:

How Many Optimized Distances per Second?

128 elements, single thread, core-i7, 3.4 Ghz

• L1 27 millions

• L2 33 millions

• Itakura-Saito 8.3 million

• KL-divergence 28 million

Efficiency:

How Many Optimized Distances per Second?

128 elements, single thread, core-i7, 3.4 Ghz

• L1 27 millions

• L2 33 millions

• Itakura-Saito 8.3 million

• KL-divergence 28 million

3.5x faster!

Efficiency:

How Many Optimized Distances per Second?

128 elements, single thread, core-i7, 3.4 Ghz

• L1 27 millions

• L2 33 millions

• Itakura-Saito 8.3 million

• KL-divergence 28 million

40x faster!

3.5x faster!

Efficiency:

How Many JS-Divergences per Second?









 


i

ii
iiiiii

yx
yxyyxx

2
log)(loglog

2

1

  
i

iiii yxx loglog
2

1

 
 
  
























i ii

ii
ii

ii

yx

yx
yx

yx

,max

,min
1log,maxlog

2

1
log

2

)(

• Precompute logs at index time
• Discretize and approximate the last log

Efficiency:

How Many JS-Divergences per Second?

128 elements, single thread, core-i7, 3.4 Ghz

• unoptimized 0.2 million

• precomputed logs 0.6 million

• discretized log 1.1 million

• SIMD operations 3.9 million

Efficiency:

How Many JS-Divergences per Second?

128 elements, single thread, core-i7, 3.4 Ghz

• unoptimized 0.2 million

• precomputed logs 0.6 million

• discretized log 1.1 million

• SIMD operations 3.9 million

20x faster!

Efficiency:

How Many Distances per Second?

128 elements, core-i7, 3.4 Ghz, 8 cores, 10GB/sec memory

~ 2.5 million distance computations/sec

memory becomes a bottleneck!

Design I: Simplifications

• Don’t care about storing indices on disk – more rapid
development.

• We have a single binary that covers all methods and
spaces (both integer and floating-point distances).

• Factory pattern: adding a new method/space doesn’t
require changing shared code and/or makefiles!

• Similar interface for NN and range queries: same code
can be used.

Design II (Search Oracles)

Most importantly, metric space access methods can

work in non-metric spaces, if we replace the triangle

inequality based pruning with a more generic search

oracle.

Search Oracle

(three types of query balls)

In metric spaces , the triangle inequality allows us to
distinguish among three types of query balls!

What about Non-metric Spaces?

• We have a classification problem, the decision function
can be learned.

• One can use sampling, which is old idea (Zezula et al.
1998, Amato et al. 2003).

• A decision function can be approximated using, e.g., a
piecewise linear function (Chavez & Navarro, 2003).

• We tried both and found naïve sampling to be inferior,
details can be found in our NIPS 2013 paper.

Search Oracle (Learned by Sampling)

Euclidian distance
Colors data set

Search Oracle (Learned by Sampling)

KL-divergence
RCV-8, Cayton 2007

Evaluation

• Methods should return a set of found object ids –

necessary for automatic evaluation.

• Effectiveness metrics should be computed

automatically.

• Exhaustive search is expensive – compute ones

for several methods.

Evaluation

• Best, when we have real queries.

• If not, bootstrap-like automatic test procedures can
randomly divide data into indexable data and query
sets.

• One should not search for queries that are already
indexed!

• One should not create queries by applying additive
noise to data points!

Additive Noise: KL-divergence

KL-divergence: distribution of distances to a pivot.
The red line denotes the median distance to the pivot in unmodified data.

Additive Noise: KL-divergence

KL-divergence: distribution of distances to a pivot.
The red line denotes the median distance to the pivot in unmodified data.

Efficient
pruning is not

possible!

Same Amount of Additive Noise: L2

Euclidian distance: distribution of distances to a pivot.
The red line denotes the median distance to the pivot in unmodified data.

Same Amount of Additive Noise: L2

Euclidian distance: distribution of distances to a pivot.
The red line denotes the median distance to the pivot in unmodified data.

Apparently, additive noise is more
problematic non-metric spaces

Add more noise:

Is Euclidean Distance Robust?

The red line denotes the median distance to the pivot in unmodified data.

Efficient
pruning is

not
possible!

Implemented Methods

Metric Non-Metric

VP-tree VP-tree (with learned oracles)

GH-tree BB-tree (for Bregman divergences)

List of clusters Permutation index (regular and
incremental sorting)

Spatial approximation tree Permutation prefix index

LSH (classic and multi-probe) Permutations indexed with VP-tree

Implemented Methods

Metric Non-Metric

VP-tree VP-tree (with learned oracles)

GH-tree BB-tree (for Bregman divergences)

List of clusters Permutation index (regular and
incremental sorting)

Spatial approximation tree Permutation prefix index

LSH (classic and multi-probe) Permutations indexed with VP-tree

 Our library is about 50% non-metric!

Nearest Neighbor (L2)

Vector space 112 elements

Nearest Neighbor (L2)

Vector space 128 elements

Nearest Neighbor (KL-divergence)

Vector space 128 elements

Nearest Neighbor (KL-divergence)

Vector space 1111 elements

Future Work

• Implement additional methods for non-metric
spaces.

• Better search oracles (our resampling is naïve)

• Add new spaces (we want to have very efficient
distance functions).

• More test sets, especially with human judgments.

New Methods to Implement

• TriGen (Skopal, 2007)

• Permutation-based locality sensitive hashing (Tellez,

Chavez, 2010)

• Small-word approaches (Malkov et al 2012; Houle and

Nett, 2013)

• VA-file and the R-tree for Bregman divergences (2009)

• LSH for symmetrized divergences (Yadong Mu, Shuicheng

Yan, 2010)

• Ptolemaic indexing (Hetland et al, 2013)

Concluding Notes

• Software and data are available online:
https://github.com/searchivarius/NonMetricSpaceLib

• It is still work in progress.

• The design is not set in stone, we can change it.

• Future additions are welcome (we would be happy to
acknowledge them).

• We can jointly produce a very through experimental
study (e.g., for ACM Computing Surveys).

https://github.com/searchivarius/NonMetricSpaceLib

Thank you!

Questions?

