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Novelty 

• Focus on approximate searching. 

 

• Automatic evaluation (relative position error, recall, 
number of points closer than NN-neighbor, etc). 

 

• Focus on efficiency and real-world performance. 

 

• Design influenced by Metric Spaces Library: yet, it was 
reworked and simplified. 

 

• New methods and data sets. 

 
 

 



Efficiency: Programming Language 

• C++ programs are fast. 

 

• Legacy C-code can be ported rather 
easily. 

 

• It is easy to use Single Instruction 
Multiple Data (SIMD) operations. 



Efficiency: Not every Distance is Hard 

• Many real data sets are (intrinsically) low-
dimensional. 

 
• Inexact nature of searching often permits to 

approximate a complex distance function 
with a simple one. 
 

• For example, through dimensionality 
reduction techniques such as PCA or random 
projections. 

 



Efficiency: How Many Distances per Second? 

128 elements, single thread, core-i7, 3.4 Ghz 

 

• L1      9.6 millions 

 

• L2     9.1 millions 

 

• Itakura-Saito  190 thousand 

 

• KL-divergence  530 thousand 
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Slow 
distances! 



Efficiency: Optimizing Euclidian Distance 
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Let’s use SIMD instructions:  
one instruction  multiplies/adds 4 numbers! 



Efficiency: Optimizing KL-divergence 
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• Precompute logs at index time. 
 
• In addition, use SIMD at query time. 
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Efficiency:  

How Many Optimized Distances per Second? 

128 elements, single thread, core-i7, 3.4 Ghz 

 

• L1      27 millions 

 

• L2     33 millions 

 

• Itakura-Saito  8.3 million 

 

• KL-divergence  28 million 
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Efficiency:  

How Many Optimized Distances per Second? 

128 elements, single thread, core-i7, 3.4 Ghz 

 

• L1      27 millions 

 

• L2     33 millions 

 

• Itakura-Saito  8.3 million 

 

• KL-divergence  28 million 

 

 

40x faster! 

3.5x faster! 



Efficiency:  

How Many JS-Divergences per Second? 
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•  Precompute logs at index time 
•  Discretize and approximate the last log 



Efficiency:  

How Many JS-Divergences per Second? 

128 elements, single thread, core-i7, 3.4 Ghz 

 

• unoptimized     0.2 million 

 

• precomputed logs   0.6 million 

 

• discretized log   1.1 million 

 

• SIMD operations   3.9 million 
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Efficiency:  

How Many Distances per Second? 

128 elements, core-i7, 3.4 Ghz, 8 cores, 10GB/sec memory 

 

 

~ 2.5 million distance computations/sec  

memory becomes a bottleneck! 
 

 



Design I: Simplifications 

• Don’t care about storing indices on disk – more rapid 
development. 

 

• We have a single binary that covers all methods and 
spaces (both integer and floating-point distances). 

 

• Factory pattern:  adding a new method/space doesn’t 
require changing shared code and/or makefiles!  

 

• Similar interface for NN and range queries: same code 
can be used. 

 
 



Design II (Search Oracles) 

 

 

Most importantly, metric space access methods can 

work in non-metric spaces, if we replace the triangle 

inequality based pruning with a more generic search 

oracle. 

 
 

 

 



Search Oracle  

(three types of query balls) 

In metric spaces , the triangle inequality allows us to 
distinguish among three types of query balls! 



What about Non-metric Spaces? 

• We have a classification problem, the decision function 
can be learned. 

 

• One can use sampling, which is old idea (Zezula et al. 
1998, Amato et al. 2003). 

 

• A decision function can be approximated using, e.g., a 
piecewise linear function (Chavez & Navarro, 2003). 

 

• We tried both and found naïve sampling to be inferior, 
details can be found in our NIPS 2013 paper. 

 

 



Search Oracle (Learned by Sampling) 

Euclidian distance 
Colors data set 



Search Oracle (Learned by Sampling) 

KL-divergence 
RCV-8, Cayton 2007 



Evaluation 

• Methods should return a set of found object ids – 

necessary for automatic evaluation. 

 

• Effectiveness metrics should be computed 

automatically.  

 

• Exhaustive search is expensive – compute ones 

for several methods. 

 

 



Evaluation 

• Best, when we have real queries. 

 

• If not, bootstrap-like automatic test procedures can 
randomly divide data into indexable data and query 
sets. 

 

• One should not search for queries that are already 
indexed! 

 

• One should not create queries by applying additive 
noise to data points! 

 



Additive Noise: KL-divergence 

KL-divergence: distribution of distances to a pivot. 
The red line denotes the median distance to the pivot in unmodified data. 



Additive Noise: KL-divergence 

KL-divergence: distribution of distances to a pivot. 
The red line denotes the median distance to the pivot in unmodified data. 

Efficient 
pruning is not 

possible! 



Same Amount of Additive Noise: L2 

Euclidian distance: distribution of distances to a pivot. 
The red line denotes the median distance to the pivot in unmodified data. 



Same Amount of Additive Noise: L2 

Euclidian distance: distribution of distances to a pivot. 
The red line denotes the median distance to the pivot in unmodified data. 

Apparently, additive noise is more 
problematic non-metric spaces 



Add more noise:  

Is Euclidean Distance Robust? 

The red line denotes the median distance to the pivot in unmodified data. 

Efficient 
pruning is 

not 
possible! 



Implemented Methods 

Metric Non-Metric 

VP-tree VP-tree (with learned oracles) 

GH-tree BB-tree (for Bregman divergences) 

List of clusters Permutation index (regular and 
incremental sorting) 

Spatial approximation tree Permutation prefix index 

LSH (classic and multi-probe) Permutations indexed with VP-tree 
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Metric Non-Metric 

VP-tree VP-tree (with learned oracles) 

GH-tree BB-tree (for Bregman divergences) 

List of clusters Permutation index (regular and 
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Spatial approximation tree Permutation prefix index 
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 Our library is about 50% non-metric! 



Nearest Neighbor (L2)  

 

Vector space 112 elements 



Nearest Neighbor (L2)  

 

Vector space 128 elements 



Nearest Neighbor (KL-divergence)  

 

Vector space 128 elements 



Nearest Neighbor (KL-divergence)  

 

Vector space 1111 elements 



Future Work 

• Implement additional methods for non-metric 
spaces. 

 

• Better search oracles (our resampling is naïve) 

 

• Add new spaces (we want to have very efficient 
distance functions). 

 

• More test sets, especially with human judgments. 



New Methods to Implement 

• TriGen (Skopal, 2007) 

• Permutation-based locality sensitive hashing (Tellez, 

Chavez, 2010) 

• Small-word approaches (Malkov et al 2012; Houle and 

Nett, 2013) 

• VA-file and the R-tree for Bregman divergences (2009) 

• LSH for symmetrized divergences (Yadong Mu, Shuicheng 

Yan, 2010) 

• Ptolemaic indexing (Hetland et al, 2013) 

 



Concluding Notes 

• Software and data are available online: 
https://github.com/searchivarius/NonMetricSpaceLib 

 

• It is still work in progress. 

 

• The design is not set in stone, we can change it. 

 

• Future additions are welcome (we would be happy to 
acknowledge them). 

 

• We can jointly produce a very through experimental 
study (e.g., for ACM Computing Surveys). 

https://github.com/searchivarius/NonMetricSpaceLib


Thank you! 

Questions? 


