

Non-metric Space Library

Bileg Naidan, Leo Boytsov

- BITTERORES - TERENAL ROBBES - SPIE, RARERS - SPIE, RARERS - SPIELINGS

10n-

1000

ALL DAS

GEORGIA

REFERENCE
 SECTION S
 SECTION S

Novelty

- Focus on approximate searching.
- Automatic evaluation (relative position error, recall, number of points closer than NN-neighbor, etc).
- Focus on efficiency and real-world performance.
- Design influenced by Metric Spaces Library: yet, it was reworked and simplified.
- New methods and data sets.

Efficiency: Programming Language

C++ programs are fast.

 Legacy C-code can be ported rather easily.

 It is easy to use Single Instruction Multiple Data (SIMD) operations.

Efficiency: Not every Distance is Hard

- Many real data sets are (intrinsically) lowdimensional.
- Inexact nature of searching often permits to approximate a complex distance function with a simple one.
- For example, through dimensionality reduction techniques such as PCA or random projections.

Efficiency: How Many Distances per Second?

128 elements, single thread, core-i7, 3.4 Ghz

- L1 9.6 millions
- L2 9.1 millions
- Itakura-Saito 190 thousand
- KL-divergence 530 thousand

Efficiency: How Many Distances per Second?

128 elements, single thread, core-i7, 3.4 Ghz

Efficiency: Optimizing Euclidian Distance

 $L_2(x, y) = \sqrt{\sum_i (x_i - y_i)^2}$

Let's use SIMD instructions: one instruction multiplies/adds 4 numbers!

Efficiency: Optimizing KL-divergence

 $KL(x, y) = \sum_{i} x_i \log\left(\frac{x_i}{y_i}\right) =$

 $= \sum_{i} x_{i} \log x_{i} - \sum_{i} x_{i} \log y_{i}$

- Precompute logs at index time.
- In addition, use SIMD at query time.

Efficiency: How Many Optimized Distances per Second? 128 elements, single thread, core-i7, 3.4 Ghz

- L1 27 millions
- L2 33 millions
- Itakura-Saito
 8.3 million
- KL-divergence 28 million

Efficiency: **How Many Optimized Distances per Second?** 128 elements, single thread, core-i7, 3.4 Ghz 27 millions L1 3.5x faster! 33 millions L2 **Itakura-Saito** 8.3 million ullet**KL-divergence** 28 million •

Efficiency: How Many Optimized Distances per Second? 128 elements, single thread, core-i7, 3.4 Ghz 27 millions L1 3.5x faster! 33 millions L2 **Itakura-Saito** 8.3 million ullet40x faster! **KL-divergence** 28 million •

Efficiency: How Many JS-Divergences per Second?

$$\frac{1}{2} \sum_{i} \left[x_{i} \log x_{i} + y_{i} \log y_{i} - (x_{i} + y_{i}) \log \frac{x_{i} + y_{i}}{2} \right] =$$

$$= \frac{1}{2} \sum_{i} \left[x_{i} \log x_{i} + y_{i} \log_{i} \right] - \frac{(x_{i} + y_{i})}{2} \sum_{i} \left[\log \frac{1}{2} + \log \max(x_{i}, y_{i}) + \log \left(1 + \frac{\min(x_{i}, y_{i})}{\max(x_{i}, y_{i})} \right) \right]$$

- Precompute logs at index time
- Discretize and approximate the last log

Efficiency: How Many JS-Divergences per Second?

128 elements, single thread, core-i7, 3.4 Ghz

- **unoptimized** 0.2 million
- precomputed logs

0.6 million

discretized log

1.1 million

SIMD operations

3.9 million

Efficiency: How Many JS-Divergences per Second?

128 elements, single thread, core-i7, 3.4 Ghz

- **unoptimized** 0.2 million
- precomputed logs

0.6 million

discretized log

1.1 million

SIMD operations

3.9 million

Efficiency: How Many Distances per Second?

128 elements, core-i7, 3.4 Ghz, 8 cores, 10GB/sec memory

~ 2.5 million distance computations/sec memory becomes a bottleneck!

Design I: Simplifications

- Don't care about storing indices on disk more rapid development.
- We have a single binary that covers all methods and spaces (both integer and floating-point distances).
- Factory pattern: adding a new method/space doesn't require changing shared code and/or makefiles!
- Similar interface for NN and range queries: same code can be used.

Design II (Search Oracles)

Most importantly, metric space access methods can work in non-metric spaces, if we replace the triangle inequality based pruning with a more generic search oracle.

Search Oracle (three types of query balls)

In metric spaces, the triangle inequality allows us to distinguish among three types of query balls!

What about Non-metric Spaces?

- We have a classification problem, the decision function can be learned.
- One can use sampling, which is old idea (Zezula et al. 1998, Amato et al. 2003).
- A decision function can be approximated using, e.g., a piecewise linear function (Chavez & Navarro, 2003).
- We tried both and found naïve sampling to be inferior, details can be found in our NIPS 2013 paper.

Search Oracle (Learned by Sampling)

Euclidian distance Colors data set

Search Oracle (Learned by Sampling)

KL-divergence RCV-8, Cayton 2007

Evaluation

 Methods should return a set of found object ids – necessary for automatic evaluation.

 Effectiveness metrics should be computed automatically.

 Exhaustive search is expensive – compute ones for several methods.

Evaluation

- Best, when we have real queries.
- If not, bootstrap-like automatic test procedures can randomly divide data into indexable data and query sets.

- One should not search for queries that are already indexed!
- One should not create queries by applying additive noise to data points!

Additive Noise: KL-divergence

KL-divergence: distribution of distances to a pivot. The red line denotes the median distance to the pivot in unmodified data.

Additive Noise: KL-divergence

KL-divergence: distribution of distances to a pivot. The red line denotes the median distance to the pivot in unmodified data.

Same Amount of Additive Noise: L2

Euclidian distance: distribution of distances to a pivot. The red line denotes the median distance to the pivot in unmodified data.

Same Amount of Additive Noise: L2

Euclidian distance: distribution of distances to a pivot. The red line denotes the median distance to the pivot in unmodified data.

Add more noise: Is Euclidean Distance Robust?

The red line denotes the median distance to the pivot in unmodified data.

Implemented Methods

Metric	Non-Metric
VP-tree	VP-tree (with learned oracles)
GH-tree	BB-tree (for Bregman divergences)
List of clusters	Permutation index (regular and incremental sorting)
Spatial approximation tree	Permutation prefix index
LSH (classic and multi-probe)	Permutations indexed with VP-tree

Implemented Methods

VP-tree	VP-tree (with learned oracles)
GH-tree Our library is ab List of clusters	BB-tree (for Bregman divergences) Out 50% non-metric! Permutation index (regular and incremental sorting)
Spatial approximation tree	Permutation prefix index
LSH (classic and multi-probe)	Permutations indexed with VP-tree

Nearest Neighbor (L2)

Nearest Neighbor (L2)

Nearest Neighbor (KL-divergence)

RCV-128

Nearest Neighbor (KL-divergence)

SIFT signatures pref. index \times 10^2 bbtree vp-tree – permutation 10^1 10^0 10^{-1} 10^{0} 10^{-2} 10^{-1} 10^{2} 10^1 Number closer (log. scale)

Vector space 1111 elements

Future Work

- Implement additional methods for non-metric spaces.
- Better search oracles (our resampling is naïve)
- Add new spaces (we want to have very efficient distance functions).
- More test sets, especially with human judgments.

New Methods to Implement

- TriGen (Skopal, 2007)
- Permutation-based locality sensitive hashing (Tellez, Chavez, 2010)
- Small-word approaches (Malkov et al 2012; Houle and Nett, 2013)
- VA-file and the R-tree for Bregman divergences (2009)
- LSH for symmetrized divergences (Yadong Mu, Shuicheng Yan, 2010)
- Ptolemaic indexing (Hetland et al, 2013)

Concluding Notes

- Software and data are available online: <u>https://github.com/searchivarius/NonMetricSpaceLib</u>
- It is still work in progress.
- The design is not set in stone, we can change it.
- Future additions are welcome (we would be happy to acknowledge them).
- We can jointly produce a very through experimental study (e.g., for ACM Computing Surveys).

Thank you!

Questions?

17

2

ALLENS ALLENS ALLENS ALLENS ALLENS ALLENS

AND A

10n-

- NCTURINE RECEIPTINE RECEIPTINE

UNOIS DELKI

THE

COLLEGE