Leonid Boytsov, Eric Nyberg

- Pruning Algorithms for Low-Dimensional Non-Metric k-NN Search: A Case Study
- Accurate and Fast Retrieval for Complex Non-Metric Data via Neighborhood Graphs

Acknowledgements

- Part of NMSLIB project:
 - Bileg Naidan
 - Yury Malkov
 - David Novak
- NSF grant #1618159: "Matching & ranking via proximity graphs: applications to QA & beyond"

Motivation I

- A well-known problem of k-NN search (IR, ML, NLP)
- Metric search is a well-researched problem
- Little attention to non-metric search

3/31

Motivation II

- We aim to fill this gap
- Focusing on
 - Generic methods
 - Accurate retrieval
 - Challenging distances

Terminology

• Input: We have a set of data points or objects

• Query: A query is a new object

• **Task:** Find *k* most similar objects

Distance: Smaller for more similar objects

Roadmap

- Data sets & distances
- Evaluation of hardness
- Indexing methods for non-metric similarities
 - Tree-based
 - Neighborhood graphs

Data

Name	max. # of records	dimensionality	Source
RandHist-d	0.5×10^{6}	$d \in \{8, 32\}$	Random hist.
RCV-d	0.5 × 10 ⁶	$d \in \{8, 128\}$	LDA histograms RCV1
Wiki-d	2 × 10 ⁶	<i>d</i> ∈ {8, 128}	LDA histograms Wikipedia
Manner	1.46×10^5	1.23×10^{5}	Yahoo Answers

Distances

Euclidean (
$$L_2$$
)
$$||x-y||_2 = \left[\sum_i (x_i-y_i)^2\right]^{1/2}$$

$$L_p (p>0) \qquad \left[\sum_{i=1}^m (x_i-y_i)^p\right]^{1/p}$$
Squared L_2
$$||x-y||_2^2 = \sum_i (x_i-y^i)^2$$
Cosine
$$1 - \left(\sum_i x_i y_i\right) (||x||_2 ||y||_2)^{-1}$$
KL-divergence
$$\sum_{i=1}^m x_i \log \frac{x_i}{y_i}$$
Itakura-Saito dist.
$$\sum_{i=1}^m \left[\frac{x_i}{y_i} - \log \frac{x_i}{y_i} - 1\right]$$
Rényi divergence
$$\frac{1}{\alpha-1} \log \left[\sum_{i=1}^m x_i^\alpha y_i^{1-\alpha}\right], \ \alpha>0, \alpha\neq 1$$
BM25
$$-\sum_{x_i=y_i} \mathrm{TF}_q(x_i) \cdot \mathrm{TF}_d(y_i) \cdot \mathrm{IDF}(y_i)$$

VP-tree Indexing

Select results on Wiki-128:

The state of the s		
	Recall	Speed-up over BF.
$L_p(p = 0.125)$	0.07	14845
Cosine dist.	0.73	55
Rényi div. ($\alpha=2$)	0.71	55
KL-div.	0.56	41
Itakura-Saito	0.14	384

Distance Approximations

- Average-based symmetrization: $\frac{d(x,y)+d(y,x)}{2}$
- Min-based symmetrization: min(d(x,y),d(y,x))
- Argument-reversed distance: d(y,x)
- The Euclidean distance
- A learned metric and/or non-metric distance

Filter-and-Refine via Approximation

Select results for Rényi div. $\alpha = 2$:

Data set	Symmetrization		Distance learning (best result)	
	k _c	Recall	encels K _C	Recall
	(cand. <i>k</i>)	reached	(cand. <i>k</i>)	reached
RCV-8	20	99	640	100
Wiki-8	20	99	640	99
RandHist-8	160	100	320	99
RCV-128	80	99	20480	66
Wiki-128	80	99	20480	87
RandHist-32	2560	99	20480	100

Takeaways

- Non-metric data cannot be handled using metric search methods directly
- Filter-and-refine entails either efficiency or accuracy penalty
- Symmetrization may work in some cases
- Metrization results are quite poor

Hierarchical Space Decomposition (VP-tree)

Hierarchical Space Decomposition (VP-tree)

Three Types of the Query Ball

Gray ball case:

$$r \geq D_{\pi,R}(d(\pi,q)) = |R - d(\pi,q)|$$

Generic Decision Function $D_{\pi,R}$

Gray ball case:

max. dist. to query $\geq D_{\pi,R}$ (dist. to pivot)

Adapting Metric Methods to non-Metric Spaces

- Learning a piece-wise linear decision-making function
- Stretching the distance using concave mapping (TriGen)

Two Simple Symmetrization Approaches

TriGen0

- Prune using the symmetrized version
- Update neighbors using the original distance

TriGen1

- Compute symmetrized distance only in internal nodes
- Update query radius using an upper bound

Case in Point: TriGen1 vs TriGen0

TriGen1 (blue) performs fewer distance computations than TriGen0 (green):

Key Results

- Symmetrization approach matters
- Original TriGen distance mapping is not very efficient and it hurts performance a lot
- The best approach may be a hybrid between piece-wise linear pruner and TriGen

Experiments withNeighborhood Graphs

- Data points are nodes
- Sufficiently close points are connected
- A search procedure is a semi-greedy traversal of the graph

- Data points are nodes
- Sufficiently close points are connected
- A search procedure is a semi-greedy traversal of the graph

- Data points are nodes
- Sufficiently close points are connected
- A search procedure is a semi-greedy traversal of the graph

- Data points are nodes
- Sufficiently close points are connected
- A search procedure is a semi-greedy traversal of the graph

- Data points are nodes
- Sufficiently close points are connected
- A search procedure is a semi-greedy traversal of the graph

Proxy Functions for Indexing

Build a neighborhood graph using:

- min-based symmetrization
- average-based symmetrization
- reversed-argument distance
- Euclidean distance

Legend & Experiment Summary

- Red: no symmetrization
- Blue: full filter-and-refine symmetrization
- Solid black: index-time proxying
- Solid black circle: averaged-based distance index-time
- Solid black box: reversed-argument distance index-time

Case 1

10x speed-up with index-time proxy:

Itakura-Saito dist. RCV-128

Case 2
Reversal of arguments can hurt:

Itakura-Saito dist. RandHist-32

Takeaways

- The neighborhood graph worked well for substantially non-symmetric distance
- Index-time proxying, e.g., symmetrization, can be beneficial
- Yet, full filter-and-refine symmetrization is likely suboptimal

Concluding Remarks

- Non-Metric k-NN search can be challenginge
- We have working solution (NMSLIB):
 - Non-metric adaptations of metric methods
 - Neighborhood graphs
 - Neighborhood approximation index

