Permutation Search
Methods are Efficient,
Yet Faster Search is Possible

Bileg (Bilegsaikhan) Naidan' Leo (Leonid) Boytsov? Eric Nyberg?

"Norwegian University of Science and Technology (NTNU)

2Carnegie Mellon University (CMU)

https://github.com/searchivarius/NonMetricSpaceLib

Nearest-neighbor search (NN-search)

1717 4/9/15

Nearest-neighbor search (NN-search)

e Input: A set of n objects and a distance function d(x, y)

1717 4/9/15

Nearest-neighbor search (NN-search)

e Input: A set of n objects and a distance function d(x, y)
e Query: New object g and k

1717 4/9/15

1717

Nearest-neighbor search (NN-search)

e Input: A set of n objects and a distance function d(x, y)

e Query: New object g and k

e Task: Quickly find kK most similar objects in the database

tog

(0]

Query q
k=3

4/9/15

2/17

Distance function

Name
Euclidean (L)

Cosine distance
KL-diverg.

JS-diverg.

d(x,y)

V22X —yi)?
_xy
IXIIy)\(
X,'|O gl
2 xilog
symmetrized & smoothed

KL-diverg.

Symmetry
v

v
X
v

Triangle ineq.

v

X
X
X

Distance functions can be metric or non-metric

4/9/15

How to find similar objects?

3/17 4/9/15

How to find similar objects?

e Brute-force

» Exact search

o Slow: n distance computations

3/17 4/9/15

How to find similar objects?

e Brute-force

o Exact search

o Slow: n distance computations

e Indexing

o Exact search is mostly slow in high-dimensions and/or
non-metric spaces: O(n) distance computations

o Approximate search can be fast

3/17 4/9/15

State-of-the-art approximate search methods

Locality Sensitivity Hashing (LSH)

VP-tree/ball-tree (data-dependent tuning)

Proximity graphs (kNN-graphs)

Permutation methods

4/17 4/9/15

Why should we care about permutation methods?

5/17 4/9/15

Why should we care about permutation methods?

e Promising universal methods for non-metric spaces

5/17 4/9/15

Why should we care about permutation methods?

e Promising universal methods for non-metric spaces

e Mapping data from “hard” spaces to “easy” spaces (the
Euclidean space)

5/17 4/9/15

Why should we care about permutation methods?

e Promising universal methods for non-metric spaces

e Mapping data from “hard” spaces to “easy” spaces (the
Euclidean space)

o Database-friendly methods that are easy to implement
on top of a database system or Lucene

5/17 4/9/15

Research questions

6/17 4/9/15

Research questions

e How good are permutation-based projections?

6/17 4/9/15

Research questions

e How good are permutation-based projections?

e How well do permutation methods fare against state of
the art?

6/17 4/9/15

Permutation Methods

e Filter-and-refine methods using pivot-based
projection to the permutation space (L or L,)

7/17 4/9/15

Permutation Methods

e Filter-and-refine methods using pivot-based
projection to the permutation space (L or L,)

 Select randomly a set of reference points called pivots

7/17 4/9/15

7/17

Permutation Methods

e Filter-and-refine methods using pivot-based
projection to the permutation space (L, or L;)

 Select randomly a set of reference points called pivots

e Order pivots by their distances to data points to obtain
pivot rankings, which we call permutations

4/9/15

Permutation Methods

Filter-and-refine methods using pivot-based
projection to the permutation space (L, or L;)

Select randomly a set of reference points called pivots

Order pivots by their distances to data points to obtain
pivot rankings, which we call permutations

Filter by comparing permutations to obtain candidate
points

7/17 4/9/15

Permutation Methods

e Filter-and-refine methods using pivot-based
projection to the permutation space (L, or L;)

 Select randomly a set of reference points called pivots

e Order pivots by their distances to data points to obtain
pivot rankings, which we call permutations

e Filter by comparing permutations to obtain candidate
points

o Refine by comparing candidate points to the query

7/17 4/9/15

Permutation Methods

How do we carry out the filtering step?

8/17 4/9/15

Permutation Methods

How do we carry out the filtering step?

e Brute force searching

8/17 4/9/15

Permutation Methods

How do we carry out the filtering step?

e Brute force searching

¢ Indexing of permutations

8/17 4/9/15

8/17

Permutation Methods

How do we carry out the filtering step?

e Brute force searching

¢ Indexing of permutations

« Neighborhood APProximation Index (NAPP) is the best
approach

4/9/15

Experiments: Datasets

Name Distance Number Brute-force Dimens.
function of points (sec.)
Metric Data
CoPhIR Ly 5.10° 0.6 282
SIFT Ly 5.10° 0.3 128
ImageNet SQFD 1-.10° 4.1 N/A
Non-Metric Data

Wiki-sparse Cosine sim. 4.10° 1.9 10°
Wiki-8 KL-div/)S-div 2-10° 0.045/0.28 8
Wiki-128 KL-div/)S-div 2.10° 0.22/4 128
DNA Norm. Leven. 1-10° 35 N/A

9717

4/9/15

10717

Experiments: Projection Quality

Distance in the original space vs. distance in the projected space.
The closer to a monotonic mapping, the better:

3004

100+

0 200 400 600
Good projection (original distance: L)
4/9/15

Experiments: Projection Quality

Distance in the original space vs. distance in the projected space.
The closer to a monotonic mapping, the better:

250+ °

200+

1504

100+

50+

Bad projection (original distance: JS-div.)
11717 4/9/15

Experiments: Efficiency vs Accuracy

Improvement in efficiency over brute-force search vs. accuracy.
Higher and to the right is better:

SIFT (L)

T T T T

102

- VP-tree
101 —&— MPLSH
—©— kNN-graph (SW)
—A— NAPP

I

|
0.7 0.8 0.9 1
Recall

12/17 4/9/15

Improv. in efficiency (log. scale)

I
>

Experiments: Efficiency vs Accuracy

Improvement in efficiency over brute-force search vs. accuracy.
Higher and to the right is better:

Norm. Levenshtein
T T T

T
= - VP-tree
T 10%| | <~ kNN-graph (NN-desc)]
- | | —&— brute-force filt. bin. i
& | NAPP |
- L |
Q I N
=]
2
] I i
&
]
R=!
1L |
o 10 g]
8 § |
o, L i
g ,]
=
L ! ! ! ! L
0.6 0.7 0.8 0.9 1
Recall

13/17 4/9/15

Conclusions

e Permutation methods beat state-of-the-art methods
(VP-trees, kNN-graphs and Multiprobe LSH) for some
data sets, in particular, when the distance function is
expensive

14717 4/9/15

14717

Conclusions

e Permutation methods beat state-of-the-art methods
(VP-trees, kNN-graphs and Multiprobe LSH) for some
data sets, in particular, when the distance function is
expensive

e The quality of permutation-based projection can be
both good and poor: it appears to be better when the
space is metric and/or dimensionality is low

4/9/15

Poster Session Discussion Points

What makes a good, amenable, non-metric
space?

15/17 4/9/15

Thank you for your attention!

16/17 4/9/15

Some technical details

Permutation Methods

The data points are a, b, ¢, d in 2-dim. Euclidean space (L).
The Voronoi diagram produced by 4 pivots ;.

Pivot Order | Permutations

ks
£
wn

T, T2, T3, T4 (1,2,3,4
T, T2, T4, T3 (1 2 4 3

())
())
(m3,m,m2,ma) | (2,3,1,4)
() (3,2,4,1)

T4, 72,71, 73

Position of 74 is 1

Permutation Methods

Permutation is
a fancy word for
The data points are a, b, ¢, d a pivot ranking!
The Voronoi diagram produced by Zpm

Pivot Order | Permutations

ks
£
wn

T, T2, T3, T4 (1,2,3,4
T, T2, T4, T3 (1 2 4 3

())
())
(m3,m,m2,ma) | (2,3,1,4)
() (3,2,4,1)

T4, 72,71, 73

Position of 74 is 1

Permutation Methods

e Filtering step - compare permutations instead of

original data points to obtain ~

 candidate points

« Footrule distance(x,y) = >, |x, yil (same as Ly)
o Spearman’s rho distance (same as L)

Point

Footrule(a, o)

» Refinement step - apply d(q,
(in our example, v = 2, q =

b | 1=1+2-2[+3-4|+[4-3/=2
¢ | M=2(+2-3|+PB-1|+|4-4 =4
d | 1=3/+2-2/+3-4|+[4—-1=6

o) for the candidate points
a,d(g,b) and d(g, c))

candidate points

Permutation Methods

Filtering step:

e Naive approach - Brute force searching

e using a priority queue

o incremental sorting [Gonzales 2008] (x 2 faster than the
priority queue approach)

» binarized permutations (select a threshold b and use the
Hamming distance)

« Brute force in the permutation space is efficient if the
distance is expensive.

Permutation Methods

To reduce the cost of the filtering stage, three types of
indices were proposed:
e use the existing methods for metric spaces [Figueroa
2009]
e the Permutation Prefix Index (PP-Index) [Esuli 2009]
e the Metric Inverted File (MI-file) [Amato et al. 2008]

Permutation Methods

Permutation Prefix Index (PP-index) [Esuli 2009]

Point | Pivot Order
a (71,2, T3, 74)
b | (m,m2,m4,73)
¢ (7T 77177-(277‘—4)
d | (wa,m2,m,73)

Permutation Methods

Metric Inverted File (MI-file) [Amato et al. 2008]

Posting Lists

Point | Pivot Order
a (71'1,77'2,13 /x4)
b (’ﬂ' 7T2,W4A73)
C (7T 7T1,7TZ,T4)
d | (mg,m,7m1.73)

(a,1),(b,1),(c,2)
(0,2),(b,2),(d,2)
(c1)

(d1)

Permutation Methods

Neighborhood Approximation Index (NAPP) [Tellez et al.
2013]

e Simplified version of MI-file
e Main differences:
» Posting lists contain only object identifiers (no positions
of pivots in permutations)
» Not possible to compute the Footrule distance
o The number of most closest common pivots is used to
sort candidate objects

Indexing of permutations

Neighborhood APProximation index (NAPP) appears to be
the best indexing approach:

Indexing of permutations

Neighborhood APProximation index (NAPP) appears to be
the best indexing approach:

e Neighboring points should share some closest pivots

Indexing of permutations

Neighborhood APProximation index (NAPP) appears to be
the best indexing approach:

e Neighboring points should share some closest pivots

e Index k closest pivots using an inverted file

Indexing of permutations

Neighborhood APProximation index (NAPP) appears to be
the best indexing approach:

e Neighboring points should share some closest pivots
e Index k closest pivots using an inverted file

e Retrieve candidate points that share m < k closest
pivots with the query

Experimental settings

[noframenumbering]

e Our program is written in C++ and compiled in GCC 4.8
with the option -0fast

e Linux Intel Xeon server (3.60 GHz, 32GB memory) in a
single threaded mode using the Non-Metric Space
Library

e Quality measure - Recall
e Performance measure -

time needed for brute force search

Improvement m EfﬁaenCy — %ime needed for approximate search

Experiments: Indexing time

Indexing time in minutes:

VP-tree NAPP MPLSH Brute-force filt. kNN graph

SIFT 0.4 5 18.4 52.2
ImageNet 4.4 33 32.3 127.6
Wiki-sparse 7.9 231.2
Wiki-128 1.2 36.6 36.1

DNA 0.9 15.9 15.6 88

Experiments: Efficiency vs Accuracy

Improvement in efficiency over brute-force search vs.

accuracy. Higher and to the right is better:

Improv. in efficiency (log. scale)

® NAPP beats MPLSH & VP-tree for SIFT, as well as VP-tree for Wiki-128

10% £

SIFT (L)

10!

L|—e— MPLSH

- VP-tree

—&— kNN-graph (SW)
—a— NAPP

0.6

T T
0.7 0.8
Recall

0.9

Improv. in efficiency (log. scale)

10%

10

ImageNet (SQFD)

- VP-tree
—M- brute-force filt.
—&— kNN-graph (SW)
—a— NAPP

T T T 1
0.75 08 085 09

Recall

® kNN graph is the best for SIFT, Wiki-128, and ImageNet

L
0.95

1

Experiments: Efficiency vs Accuracy

Improvement in efficiency over brute-force search vs.
accuracy. Higher and to the right is better:

Improv. in efficiency (log. scale)

Wiki-sparse (cosine dist.) Norm. Levenshtein
—6- kNN-graph (SW) = | |-e= VP-tree
e NAPP E 10° | o~ KNN-graph (NN-desc) 1
102} i z F|-e— brute-force filt. bin.
5 & [NAPP
r =
5]
10 = E| EE“’
Tt 1
I Z
E L
10° & I I I B C | | . . L
0.7 0.8 0.9 0.6 0.7 0.8 0.9 1
Recall Recall

® kNN graph is the best for Wiki-sparse
® Brute force filtering beats all methods including kNN graphs for Norm.

Levenshtein

Some Applications

NN-search is a core primitive in machine learning, vision and
language processing.

Some Applications

NN-search is a core primitive in machine learning, vision and
language processing.

Query by image content

Classification

Entity detection

Spell-checking

