
Permutation Search
Methods are Efficient,

Yet Faster Search is Possible
Bileg (Bilegsaikhan) Naidan1 Leo (Leonid) Boytsov2 Eric Nyberg2

1Norwegian University of Science and Technology (NTNU)
2Carnegie Mellon University (CMU)

https://github.com/searchivarius/NonMetricSpaceLib

Nearest-neighbor search (NN-search)

• Input: A set of n objects and a distance function d(x, y)
• Query: New object q and k
• Task: Quickly find k most similar objects in the database
to q

Query q
k = 3 q

1
2

3

1/ 17 4/9/15

Nearest-neighbor search (NN-search)

• Input: A set of n objects and a distance function d(x, y)

• Query: New object q and k
• Task: Quickly find k most similar objects in the database
to q

Query q
k = 3 q

1
2

3

1/ 17 4/9/15

Nearest-neighbor search (NN-search)

• Input: A set of n objects and a distance function d(x, y)
• Query: New object q and k

• Task: Quickly find k most similar objects in the database
to q

Query q
k = 3 q

1
2

3

1/ 17 4/9/15

Nearest-neighbor search (NN-search)

• Input: A set of n objects and a distance function d(x, y)
• Query: New object q and k
• Task: Quickly find k most similar objects in the database
to q

Query q
k = 3 q

1
2

3

1/ 17 4/9/15

Distance function

Name d(x, y) Symmetry Triangle ineq.
Euclidean (L2)

√∑
(xi − yi)2

Cosine distance 1− x · y
|x||y|

KL-diverg. ∑ xi log xiyi
JS-diverg. symmetrized & smoothed

KL-diverg.

Distance functions can bemetric or non-metric

2/ 17 4/9/15

How to find similar objects?

• Brute-force
• Exact search
• Slow: n distance computations

• Indexing
• Exact search is mostly slow in high-dimensions and/or
non-metric spaces: O(n) distance computations

• Approximate search can be fast

3/ 17 4/9/15

How to find similar objects?

• Brute-force
• Exact search
• Slow: n distance computations

• Indexing
• Exact search is mostly slow in high-dimensions and/or
non-metric spaces: O(n) distance computations

• Approximate search can be fast

3/ 17 4/9/15

How to find similar objects?

• Brute-force
• Exact search
• Slow: n distance computations

• Indexing
• Exact search is mostly slow in high-dimensions and/or
non-metric spaces: O(n) distance computations

• Approximate search can be fast

3/ 17 4/9/15

State-of-the-art approximate search methods

• Locality Sensitivity Hashing (LSH)

• VP-tree/ball-tree (data-dependent tuning)

• Proximity graphs (kNN-graphs)

• Permutation methods

4/ 17 4/9/15

Why should we care about permutation methods?

• Promising universalmethods for non-metric spaces

• Mapping data from “hard” spaces to “easy” spaces (the
Euclidean space)

• Database-friendlymethods that are easy to implement
on top of a database system or Lucene

5/ 17 4/9/15

Why should we care about permutation methods?

• Promising universalmethods for non-metric spaces

• Mapping data from “hard” spaces to “easy” spaces (the
Euclidean space)

• Database-friendlymethods that are easy to implement
on top of a database system or Lucene

5/ 17 4/9/15

Why should we care about permutation methods?

• Promising universalmethods for non-metric spaces

• Mapping data from “hard” spaces to “easy” spaces (the
Euclidean space)

• Database-friendlymethods that are easy to implement
on top of a database system or Lucene

5/ 17 4/9/15

Why should we care about permutation methods?

• Promising universalmethods for non-metric spaces

• Mapping data from “hard” spaces to “easy” spaces (the
Euclidean space)

• Database-friendlymethods that are easy to implement
on top of a database system or Lucene

5/ 17 4/9/15

Research questions

• How good are permutation-based projections?

• How well do permutation methods fare against state of
the art?

6/ 17 4/9/15

Research questions

• How good are permutation-based projections?

• How well do permutation methods fare against state of
the art?

6/ 17 4/9/15

Research questions

• How good are permutation-based projections?

• How well do permutation methods fare against state of
the art?

6/ 17 4/9/15

Permutation Methods

• Filter-and-refinemethods using pivot-based
projection to the permutation space (L1 or L2)

• Select randomly a set of reference points called pivots
• Order pivots by their distances to data points to obtain
pivot rankings, which we call permutations

• Filter by comparing permutations to obtain candidate
points

• Refine by comparing candidate points to the query

7/ 17 4/9/15

Permutation Methods

• Filter-and-refinemethods using pivot-based
projection to the permutation space (L1 or L2)

• Select randomly a set of reference points called pivots

• Order pivots by their distances to data points to obtain
pivot rankings, which we call permutations

• Filter by comparing permutations to obtain candidate
points

• Refine by comparing candidate points to the query

7/ 17 4/9/15

Permutation Methods

• Filter-and-refinemethods using pivot-based
projection to the permutation space (L1 or L2)

• Select randomly a set of reference points called pivots
• Order pivots by their distances to data points to obtain
pivot rankings, which we call permutations

• Filter by comparing permutations to obtain candidate
points

• Refine by comparing candidate points to the query

7/ 17 4/9/15

Permutation Methods

• Filter-and-refinemethods using pivot-based
projection to the permutation space (L1 or L2)

• Select randomly a set of reference points called pivots
• Order pivots by their distances to data points to obtain
pivot rankings, which we call permutations

• Filter by comparing permutations to obtain candidate
points

• Refine by comparing candidate points to the query

7/ 17 4/9/15

Permutation Methods

• Filter-and-refinemethods using pivot-based
projection to the permutation space (L1 or L2)

• Select randomly a set of reference points called pivots
• Order pivots by their distances to data points to obtain
pivot rankings, which we call permutations

• Filter by comparing permutations to obtain candidate
points

• Refine by comparing candidate points to the query

7/ 17 4/9/15

Permutation Methods

How do we carry out the filtering step?

• Brute force searching
• Indexing of permutations

• Neighborhood APProximation Index (NAPP) is the best
approach

8/ 17 4/9/15

Permutation Methods

How do we carry out the filtering step?

• Brute force searching

• Indexing of permutations
• Neighborhood APProximation Index (NAPP) is the best
approach

8/ 17 4/9/15

Permutation Methods

How do we carry out the filtering step?

• Brute force searching
• Indexing of permutations

• Neighborhood APProximation Index (NAPP) is the best
approach

8/ 17 4/9/15

Permutation Methods

How do we carry out the filtering step?

• Brute force searching
• Indexing of permutations

• Neighborhood APProximation Index (NAPP) is the best
approach

8/ 17 4/9/15

Experiments: Datasets
Name Distance Number Brute-force Dimens.

function of points (sec.)

Metric Data

CoPhIR L2 5 · 106 0.6 282
SIFT L2 5 · 106 0.3 128
ImageNet SQFD 1 · 106 4.1 N/A

Non-Metric Data

Wiki-sparse Cosine sim. 4 · 106 1.9 105
Wiki-8 KL-div/JS-div 2 · 106 0.045/0.28 8
Wiki-128 KL-div/JS-div 2 · 106 0.22/4 128
DNA Norm. Leven. 1 · 106 3.5 N/A

9/ 17 4/9/15

Experiments: Projection Quality
Distance in the original space vs. distance in the projected space.
The closer to amonotonicmapping, the better:

0

100

200

300

0 200 400 600

Good projection (original distance: L2)
10/ 17 4/9/15

Experiments: Projection Quality
Distance in the original space vs. distance in the projected space.
The closer to a monotonic mapping, the better:

0

50

100

150

200

250

0.0 0.2 0.4 0.6

Bad projection (original distance: JS-div.)
11/ 17 4/9/15

Experiments: Efficiency vs Accuracy
Improvement in efficiency over brute-force search vs. accuracy.
Higher and to the right is better:

SIFT (L2)

0.6 0.7 0.8 0.9 1

101

102

Recall

Im
p

ro
v
.

in
effi

ci
en

cy
(l

og
.

sc
al

e)

VP-tree

MPLSH

kNN-graph (SW)

NAPP

12/ 17 4/9/15

Experiments: Efficiency vs Accuracy
Improvement in efficiency over brute-force search vs. accuracy.
Higher and to the right is better:

Norm. Levenshtein

0.6 0.7 0.8 0.9 1

101

102

Recall

Im
p

ro
v
.

in
effi

ci
en

cy
(l

o
g.

sc
al

e) VP-tree

kNN-graph (NN-desc)

brute-force filt. bin.

NAPP

13/ 17 4/9/15

Conclusions

• Permutation methods beat state-of-the-art methods
(VP-trees, kNN-graphs and Multiprobe LSH) for some
data sets, in particular, when the distance function is
expensive

• The quality of permutation-based projection can be
both good and poor: it appears to be better when the
space is metric and/or dimensionality is low

14/ 17 4/9/15

Conclusions

• Permutation methods beat state-of-the-art methods
(VP-trees, kNN-graphs and Multiprobe LSH) for some
data sets, in particular, when the distance function is
expensive

• The quality of permutation-based projection can be
both good and poor: it appears to be better when the
space is metric and/or dimensionality is low

14/ 17 4/9/15

Poster Session Discussion Points

What makes a good, amenable, non-metric
space?

15/ 17 4/9/15

Thank you for your attention!

16/ 17 4/9/15

Some technical details

Permutation Methods

The data points are a, b, c, d in 2-dim. Euclidean space (L2).
The Voronoi diagram produced by 4 pivots πi.

Ṑ1

Ṑ2

Ṑ4

Ṑ3

c

b
a

d

Point Pivot Order Permutations

a (π1, π2, π3, π4) (1,2,3,4)
b (π1, π2, π4, π3) (1,2,4,3)
c (π3, π1, π2, π4) (2,3,1,4)
d (π4, π2, π1, π3) (3,2,4,1)

Position of π4 is 1

Sim
ila
r

Permutation is
a fancy word for
a pivot ranking!

Permutation Methods

The data points are a, b, c, d in 2-dim. Euclidean space (L2).
The Voronoi diagram produced by 4 pivots πi.

Ṑ1

Ṑ2

Ṑ4

Ṑ3

c

b
a

d

Point Pivot Order Permutations

a (π1, π2, π3, π4) (1,2,3,4)
b (π1, π2, π4, π3) (1,2,4,3)
c (π3, π1, π2, π4) (2,3,1,4)
d (π4, π2, π1, π3) (3,2,4,1)

Position of π4 is 1

Sim
ila
r

Permutation is
a fancy word for
a pivot ranking!

Permutation Methods
• Filtering step - compare permutations instead of
original data points to obtain γ candidate points
• Footrule distance(x, y) = ∑

i |xi − yi| (same as L1)
• Spearman’s rho distance (same as L2)

Ṑ1

Ṑ2

Ṑ4

Ṑ3

c

b
a

d

Point Footrule(a, •)

b |1− 1|+ |2− 2|+ |3− 4|+ |4− 3| = 2
c |1− 2|+ |2− 3|+ |3− 1|+ |4− 4| = 4
d |1− 3|+ |2− 2|+ |3− 4|+ |4− 1| = 6 ca

nd
ida
te
po
int
s

• Refinement step - apply d(q, •) for the candidate points
(in our example, γ = 2, q = a, d(q,b) and d(q, c))

Permutation Methods

Filtering step:

• Naive approach - Brute force searching
• using a priority queue
• incremental sorting [Gonzales 2008] (×2 faster than the
priority queue approach)

• binarized permutations (select a threshold b and use the
Hamming distance)

• Brute force in the permutation space is efficient if the
distance is expensive.

Permutation Methods

To reduce the cost of the filtering stage, three types of
indices were proposed:
• use the existing methods for metric spaces [Figueroa
2009]

• the Permutation Prefix Index (PP-Index) [Esuli 2009]
• the Metric Inverted File (MI-file) [Amato et al. 2008]

Permutation Methods

Permutation Prefix Index (PP-index) [Esuli 2009]

Point Pivot Order

a (π1, π2, π3, π4)

b (π1, π2, π4, π3)

c (π3, π1, π2, π4)

d (π4, π2, π1, π3)

1

2

3 4

3

1

2

4

2

1

a b c d

Permutation Methods

Metric Inverted File (MI-file) [Amato et al. 2008]

Point Pivot Order

a (π1, π2, π3, π4)

b (π1, π2, π4, π3)

c (π3, π1, π2, π4)

d (π4, π2, π1, π3)

Posting Lists

1→ (a,1), (b,1), (c,2)
2→ (a,2), (b,2), (d,2)
3→ (c,1)
4→ (d,1)

Permutation Methods

Neighborhood Approximation Index (NAPP) [Tellez et al.
2013]
• Simplified version of MI-file
• Main differences:

• Posting lists contain only object identifiers (no positions
of pivots in permutations)

• Not possible to compute the Footrule distance
• The number of most closest common pivots is used to
sort candidate objects

Indexing of permutations

Neighborhood APProximation index (NAPP) appears to be
the best indexing approach:

• Neighboring points should share some closest pivots

• Index k closest pivots using an inverted file

• Retrieve candidate points that sharem ≤ k closest
pivots with the query

Indexing of permutations

Neighborhood APProximation index (NAPP) appears to be
the best indexing approach:

• Neighboring points should share some closest pivots

• Index k closest pivots using an inverted file

• Retrieve candidate points that sharem ≤ k closest
pivots with the query

Indexing of permutations

Neighborhood APProximation index (NAPP) appears to be
the best indexing approach:

• Neighboring points should share some closest pivots

• Index k closest pivots using an inverted file

• Retrieve candidate points that sharem ≤ k closest
pivots with the query

Indexing of permutations

Neighborhood APProximation index (NAPP) appears to be
the best indexing approach:

• Neighboring points should share some closest pivots

• Index k closest pivots using an inverted file

• Retrieve candidate points that sharem ≤ k closest
pivots with the query

Experimental settings

[noframenumbering]
• Our program is written in C++ and compiled in GCC 4.8
with the option -Ofast

• Linux Intel Xeon server (3.60 GHz, 32GB memory) in a
single threaded mode using the Non-Metric Space
Library

• Quality measure - Recall

• Performance measure -
Improvement in E�ciency = time needed for brute force search

time needed for approximate search

Experiments: Indexing time

Indexing time in minutes:

VP-tree NAPP MPLSH Brute-force filt. kNN graph

SIFT 0.4 5 18.4 52.2
ImageNet 4.4 33 32.3 127.6
Wiki-sparse 7.9 231.2
Wiki-128 1.2 36.6 36.1
DNA 0.9 15.9 15.6 88

Experiments: Efficiency vs Accuracy

Improvement in efficiency over brute-force search vs.
accuracy. Higher and to the right is better:

SIFT (L2) ImageNet (SQFD)

0.6 0.7 0.8 0.9 1

101

102

Recall

Im
p

ro
v
.

in
effi

ci
en

cy
(l

og
.

sc
al

e)

VP-tree

MPLSH

kNN-graph (SW)

NAPP

0.75 0.8 0.85 0.9 0.95 1

101

102

Recall

Im
p

ro
v
.

in
effi

ci
en

cy
(l

o
g.

sc
a
le

)

VP-tree

brute-force filt.

kNN-graph (SW)

NAPP

• NAPP beats MPLSH & VP-tree for SIFT, as well as VP-tree for Wiki-128
• kNN graph is the best for SIFT, Wiki-128, and ImageNet

Experiments: Efficiency vs Accuracy
Improvement in efficiency over brute-force search vs.
accuracy. Higher and to the right is better:

Wiki-sparse (cosine dist.) Norm. Levenshtein

0.7 0.8 0.9
100

101

102

Recall

Im
p

ro
v
.

in
effi

ci
en

cy
(l

o
g.

sc
a
le

) kNN-graph (SW)

NAPP

0.6 0.7 0.8 0.9 1

101

102

Recall

Im
p

ro
v
.

in
effi

ci
en

cy
(l

og
.

sc
al

e) VP-tree

kNN-graph (NN-desc)

brute-force filt. bin.

NAPP

• kNN graph is the best for Wiki-sparse
• Brute force filtering beats all methods including kNN graphs for Norm.
Levenshtein

Some Applications

NN-search is a core primitive in machine learning, vision and
language processing.

• Query by image content

• Classification

• Entity detection

• Spell-checking

Some Applications

NN-search is a core primitive in machine learning, vision and
language processing.

• Query by image content

• Classification

• Entity detection

• Spell-checking

