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Nearest-neighbor search (NN-search)

e Input: A set of n objects and a distance function d(x, y)

e Query: New object g and k

e Task: Quickly find kK most similar objects in the database
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Distance function

Name
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Distance functions can be metric or non-metric
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How to find similar objects?

e Brute-force

o Exact search

o Slow: n distance computations

e Indexing

o Exact search is mostly slow in high-dimensions and/or
non-metric spaces: O(n) distance computations

o Approximate search can be fast
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State-of-the-art approximate search methods

Locality Sensitivity Hashing (LSH)

VP-tree/ball-tree (data-dependent tuning)

Proximity graphs (kNN-graphs)

Permutation methods
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Why should we care about permutation methods?

e Promising universal methods for non-metric spaces

e Mapping data from “hard” spaces to “easy” spaces (the
Euclidean space)

o Database-friendly methods that are easy to implement
on top of a database system or Lucene
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Research questions

e How good are permutation-based projections?

e How well do permutation methods fare against state of
the art?
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Permutation Methods

e Filter-and-refine methods using pivot-based
projection to the permutation space (L or L,)
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Permutation Methods

e Filter-and-refine methods using pivot-based
projection to the permutation space (L, or L;)

 Select randomly a set of reference points called pivots

e Order pivots by their distances to data points to obtain
pivot rankings, which we call permutations

e Filter by comparing permutations to obtain candidate
points

o Refine by comparing candidate points to the query
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Permutation Methods

How do we carry out the filtering step?

e Brute force searching

¢ Indexing of permutations

« Neighborhood APProximation Index (NAPP) is the best
approach

4/9/15



Experiments: Datasets

Name Distance Number Brute-force Dimens.
function of points (sec.)
Metric Data
CoPhIR Ly 5.10° 0.6 282
SIFT Ly 5.10° 0.3 128
ImageNet SQFD 1-.10° 4.1 N/A
Non-Metric Data

Wiki-sparse  Cosine sim. 4.10° 1.9 10°
Wiki-8 KL-div/)S-div 2-10° 0.045/0.28 8
Wiki-128 KL-div/)S-div 2.10° 0.22/4 128
DNA Norm. Leven.  1-10° 35 N/A

9717
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Experiments: Projection Quality

Distance in the original space vs. distance in the projected space.
The closer to a monotonic mapping, the better:

3004
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0 200 400 600
Good projection (original distance: L)
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Experiments: Projection Quality

Distance in the original space vs. distance in the projected space.
The closer to a monotonic mapping, the better:
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Bad projection (original distance: JS-div.)
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Experiments: Efficiency vs Accuracy

Improvement in efficiency over brute-force search vs. accuracy.
Higher and to the right is better:
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T T T T

102

- VP-tree
101 —&— MPLSH
—©— kNN-graph (SW)
—A— NAPP

I

|
0.7 0.8 0.9 1
Recall

12/17 4/9/15

Improv. in efficiency (log. scale)

I
>



Experiments: Efficiency vs Accuracy

Improvement in efficiency over brute-force search vs. accuracy.
Higher and to the right is better:
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Conclusions

e Permutation methods beat state-of-the-art methods
(VP-trees, kNN-graphs and Multiprobe LSH) for some
data sets, in particular, when the distance function is
expensive
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Conclusions

e Permutation methods beat state-of-the-art methods
(VP-trees, kNN-graphs and Multiprobe LSH) for some
data sets, in particular, when the distance function is
expensive

e The quality of permutation-based projection can be
both good and poor: it appears to be better when the
space is metric and/or dimensionality is low
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Poster Session Discussion Points

What makes a good, amenable, non-metric
space?
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Thank you for your attention!

16/17 4/9/15



Some technical details



Permutation Methods

The data points are a, b, ¢, d in 2-dim. Euclidean space (L).
The Voronoi diagram produced by 4 pivots ;.

Pivot Order | Permutations
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Permutation Methods

Permutation is
a fancy word for
The data points are a, b, ¢, d a pivot ranking!
The Voronoi diagram produced by Zpm

Pivot Order | Permutations
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Permutation Methods

e Filtering step - compare permutations instead of

original data points to obtain ~

 candidate points

« Footrule distance(x,y) = >, |x, yil (same as Ly)
o Spearman’s rho distance (same as L)

Point

Footrule(a, o)

» Refinement step - apply d(q,
(in our example, v = 2, q =

b | 1=1+2-2[+3-4|+[4-3/=2
¢ | M=2(+2-3|+PB-1|+|4-4 =4
d | 1=3/+2-2/+3-4|+[4—-1=6

o) for the candidate points
a,d(g,b) and d(g, c))

candidate points



Permutation Methods

Filtering step:

e Naive approach - Brute force searching

e using a priority queue

o incremental sorting [Gonzales 2008] (x 2 faster than the
priority queue approach)

» binarized permutations (select a threshold b and use the
Hamming distance)

« Brute force in the permutation space is efficient if the
distance is expensive.



Permutation Methods

To reduce the cost of the filtering stage, three types of
indices were proposed:
e use the existing methods for metric spaces [Figueroa
2009]
e the Permutation Prefix Index (PP-Index) [Esuli 2009]
e the Metric Inverted File (MI-file) [Amato et al. 2008]



Permutation Methods

Permutation Prefix Index (PP-index) [Esuli 2009]

Point | Pivot Order
a (71,2, T3, 74)
b | (m,m2,m4,73)
¢ (7T 77177-(277‘—4)
d | (wa,m2,m,73)




Permutation Methods

Metric Inverted File (MI-file) [Amato et al. 2008]

Posting Lists

Point | Pivot Order
a (71'1,77'2,13 /x4)
b (’ﬂ' 7T2,W4A73)
C (7T 7T1,7TZ,T4)
d | (mg,m,7m1.73)

(a,1),(b,1),(c,2)
(0,2),(b,2),(d,2)
(c1)

(d1)



Permutation Methods

Neighborhood Approximation Index (NAPP) [Tellez et al.
2013]

e Simplified version of MI-file
e Main differences:
» Posting lists contain only object identifiers (no positions
of pivots in permutations)
» Not possible to compute the Footrule distance
o The number of most closest common pivots is used to
sort candidate objects
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Indexing of permutations

Neighborhood APProximation index (NAPP) appears to be
the best indexing approach:

e Neighboring points should share some closest pivots
e Index k closest pivots using an inverted file

e Retrieve candidate points that share m < k closest
pivots with the query



Experimental settings

[noframenumbering]

e Our program is written in C++ and compiled in GCC 4.8
with the option -0fast

e Linux Intel Xeon server (3.60 GHz, 32GB memory) in a
single threaded mode using the Non-Metric Space
Library

e Quality measure - Recall
e Performance measure -

time needed for brute force search

Improvement m EfﬁaenCy — %ime needed for approximate search




Experiments: Indexing time

Indexing time in minutes:

VP-tree NAPP MPLSH Brute-force filt. kNN graph

SIFT 0.4 5 18.4 52.2
ImageNet 4.4 33 32.3 127.6
Wiki-sparse 7.9 231.2
Wiki-128 1.2 36.6 36.1

DNA 0.9 15.9 15.6 88




Experiments: Efficiency vs Accuracy

Improvement in efficiency over brute-force search vs.

accuracy. Higher and to the right is better:

Improv. in efficiency (log. scale)

® NAPP beats MPLSH & VP-tree for SIFT, as well as VP-tree for Wiki-128
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® kNN graph is the best for SIFT, Wiki-128, and ImageNet
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Experiments: Efficiency vs Accuracy

Improvement in efficiency over brute-force search vs.
accuracy. Higher and to the right is better:

Improv. in efficiency (log. scale)

Wiki-sparse (cosine dist.) Norm. Levenshtein
—6- kNN-graph (SW) = | |-e= VP-tree
e NAPP E  10° | o~ KNN-graph (NN-desc) 1
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Tt 1
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E L
10° & I I I B C | | . . L
0.7 0.8 0.9 0.6 0.7 0.8 0.9 1
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® kNN graph is the best for Wiki-sparse
® Brute force filtering beats all methods including kNN graphs for Norm.

Levenshtein
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Some Applications

NN-search is a core primitive in machine learning, vision and
language processing.

Query by image content

Classification

Entity detection

Spell-checking



