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Talk Outline

• Definition of the nearest-neighbor (NN) search

• Importance of non-metric search

• Survey of applications in ML/NLP

• Is NN search useful?

• Targeted mini-survey of the state of the art

• How can ML improve NN search?

• Some state-of-the-art comparisons

• Overview of the Non-Metric Space Library (NMSLIB)

• Technical details

• More state-of-the-art comparisons

• Future work
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Part I

Problem Statement
Importance of Non-Metric Access Methods
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Nearest-neighbor search (k-NN search)

• Input: A set of n data points (objects) and a distance
function d(x, y)

• Query: New object q and k
• Task: Quickly find k most similar objects in the data set
to q

Query qk = 3 q
1

2

3
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Distance functions

Name d(x, y) Symmetry Triangle ineq.
Euclidean (L2) √∑

(xi − yi)2
Cosine distance 1− x · y

|x||y|
KL-diverg.

∑ xi log xiyi
JS-diverg. symmetrized & smoothed

KL-diverg.

Distance functions can bemetric or non-metric
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Why Non-Metric Distances?

Source: Jacobs et al. (2000)
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Why Non-Metric Distances?

Source: Jacobs et al. (2000)
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More Non-Metric Examples

• Kullback-Leibler divergence:

KL-div(p,q) = ∑pi log piqi

• Many statistically learned similarity functions

• More examples: Jacobs et al. (2000)
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Part II

Applications
Is Nearest-Neighbor Searching Useful?
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Some Applications in ML and NLP
• Answering analogy questions

—Mikolov et al. (2013b)

• Classification
—Wan and Peng (2005); Kusner et al. (2015)

• Entity detection
— Liu et al. (2011); Wang et al. (2009)

• Collaborative filtering
— slideshare.net/erikbern/music-recommendations-mlconf-2014

• First story detection
— Petrović et al. (2010)

• Data Imputation
— Troyanskaya et al. (2001)
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Analogy Questions

man is to king as woman is to ?

queen

• Substantial prior work: Turney (2012)

• Human-level performance achieved 10 years ago (or
earlier): Turney (2004)
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Analogy Questions : word2vec

man − king ≈ woman − queen
king −man ≈ queen − woman

queen = argmaxw similarity(w,king−man+woman)
— Cosine similarity is the best similarity function—Mikolov et al. (2013b)

Is everything Ok here?
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Analogy Questions: You Need a Hack!
• man to king as woman to ?
• acorn to woods as apple to ?
• pleasure to smile as pain to ?
• France to Paris as Japan to ?
queen orchard grimace Tokyo

0.80 king 0.66 woods 0.63 smile 0.81 Tokyo

0.71 queen 0.51 apple 0.61 pain 0.68 Japan

0.62 monarch 0.45 orchards 0.54 grin 0.66 Toyko

0.59 princess 0.44 orchard 0.49 grimace 0.64 Osaka

— The hack was only briefly mentioned in another paper by Mikolov et al. (2013a)
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k-NN Classification
An example of 3-NN binary classification:

q
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k-NN Classification

“ Probably the main insight was that KNN is capable of

making very good meta-features. Never underestimate

nearest neighbours algorithm.”

— Alexander Guschin, 2d place, Kaggle Otto Product Classification
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k-NN Classification in NLP

One possible application to document classification:

• Compute pairwise similarities between document
words using the “semantic” distance based either on

WordNet: Wan and Peng (2005), or on word

embeddings: Kusner et al. (2015)

• Aggregate pairwise similarities using either the Word
Mover’s Distance: Kusner et al. (2015), or the signature

quadratic form distance: Beecks et al. (2010)
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k-NN Classification in NLP

Source: Kusner et al. (2015)
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Part III

State of the Art
Can ML Improve It?
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How to find similar objects?

Two main options available:

• Brute-force (always exact)
• Indexing (can be exact or approximate)
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How to find similar objects?

Are exact indexing

methods sufficiently

efficient in practice?
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Curse of Dimensionality: Summary

• Exact indexing can be fast in low dimensions, but ismostly slow in a high-dimensional space
• Approximate search can be fast
• Approximate search may be the only efficient option
in a non-metric space.

25/ 49 June 9, 2016



State-of-the-art approximate search methods (notexhaustive)

• Locality Sensitive Hashing (LSH)

• Proximity graphs (kNN-graphs)

• Permutation methods

• Hierarchical space partitioning (trees)

• Inverted files (usually used as an auxiliary data

structure)
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Locality Sensitive Hashing (LSH)

• Design a hash function h(x) “sensitive” to locality
— Proposed by Kushilevitz et al. (1998); Indyk and Motwani (1998)

• The smaller is d(x, y) the more likely h(x) = h(y)
• For reliable retrieval, use many hash functions

• Works well for some Lp spaces & cosine similarity
• Also, perhaps, for kernelized similarity functions

— Kulis and Grauman (2009)

• Much less is known about performance in a more
general case — However, Athitsos et al. (2008)
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Proximity/Neighborhood Graphs
• Ideas are quite old, but relatively unknown

— Arya and Mount (1993); Toussaint (1980)

• Link reasonably close points (not necessarily NNs)

• Use this graph during retrieval

• Several variants, we use the variant of Malkov et al. (2012)

Each point is connected with two nearest neighbors:
q

start
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Permutation Methods

Filter-and-refine using pivot-based projection to the
Euclidean space (L2):

• Select pivots randomly

• Rank pivots by their distances to data points

• Filter by comparing pivot rankings
• Refine by comparing remaining points to the query
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Hierarchical space partitioning (VP-tree akaBall-tree)

• A binary space-partitioning tree
— Proposed independently by Uhlmann (1991) and Yianilos (1993)

• Ametric-space generalization of KD-tree
• Uses the triangle inequality to prune unpromising
partitions
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VP-tree: One Tree Node
Creating one index tree node:

• A (random) pivot π is selected
• The space is divided by a sphere into two halves
• The radius of the sphere is a median distance to π.

π

R
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VP-tree: Three Types of Query Balls
The triangle inequality makes pruning possible:

• Red query ball: prune the outer partition
• Blue query ball: prune the inner partition
• Gray query ball: cannot prune, visit both

π

R
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VP-tree: Pruning Rule

distance to the pivot

m
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x
.
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R 2R0
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VP-tree: Pruning Rule Learned By Sampling
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The pruning function obtained by sampling. The red
dashed line denotes a median distance R from data set
points to the pivot π.

What if we learn a parametric
piecewise-linear function instead?
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VP-tree: Pruning Rule Learned By Sampling
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What if we learn a parametric
piecewise-linear function instead?
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VP-tree: Simple Piecewise Linear Pruner
• Piecewise linear function has two parameters
• Directly optimize efficiency at a given recall

Efficiency vs. recall (10-NN search) : higher and to the right is
better (VLDB’15 results):
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Can often match or outperform the multiprobe LSH (MPLSH)

— Boytsov and Naidan (2013), Naidan et al. (2015)

VP-tree is better than

the proximity graph
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More Examples of ML for Nearest-Neighbor Search

• Data-optimality: tune parameters to your data set
— Dong et al. (2008); Cayton and Dasgupta (2007)

• Learn a distance function
— Xing et al. (2002); Prekopcsák and Lemire (2012)

• Learn a monotonic transformation of the distance
function

— Skopal and Bartoš (2012)
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Part IV

Non-Metric Space Library(NMSLIB)
• More state-of-the-art comparisons

• Using NMSLIB in other applications

• Next Steps
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NMSLIB Overview: What is Non-Metric SpaceLibrary?

• NMSLIB is a collection of search methods for generic spaces

• NMSLIB has both metric and non-metric search algorithms

• NMSLIB has both exact and approximate search algorithms

• The focus, however, is on approximate methods

• NMSLIB is an evaluation toolkit that simplifies
experimentation and processing of results

• NMSLIB is extensible (new spaces and methods can be
added)

• It was designed to be efficient: we provide efficient

implementations of major distance functions

• NMSLIB was designed as an experimental framework, but we
work towards making it useful for a broader user base
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NMSLIB Overview: Design Considerations

• Efficiency
• Implemented in C++

• Vectorized (SIMD) distances (major)
• Memory optimized layouts for trees

• Reasonable portability & interoperability
• Use C++11, the code works on Linux & Win64
• We have an experimental version works as a service
(client can be Java, C++, Python, . . . )

• We have experimental Python bindings

• Some documentation
• Quick start guide
• Detailed 60-page manual
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NMSLIB Overview: Core Methods

• NMSLIB includes four core methods:
• VP-tree
• SW-graph (proximity graph)
• NAPP (Neighborhood APProximation index)
• Brute-force filtering of permutations

• In our evaluations:
• There was no single best core method
• Some of the core methods outperformed other
approaches

• All core methods were reasonably effective for thenon-symmetric and non-metric distance
— Boytsov and Naidan (2013); Ponomarenko et al. (2014); Naidan et al. (2015)
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More State-of-the-Art Comparisons: PublicBenchmarks
Evaluation by Erik Bernhardsson

https://github.com/erikbern/ann-benchmarks

One million of SIFT vectors, L2:
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More State-of-the-Art Comparisons: PublicBenchmarks
Evaluation by Erik Bernhardsson

https://github.com/erikbern/ann-benchmarks

1.19 million of Glove 100d embeddings, cosine:

42/ 49 June 9, 2016

https://github.com/erikbern/ann-benchmarks


Next Steps

• Practical
• Index serialization for core methods is still work in

progress

• We have a version that works as a service, but it is not
propagated to the main branch yet

• No automatic parameter tuning for proximity graphs
and permutation methods

• Experimental/Scientific
• Implement and test a variety of proximity graphs

• Compare proximity graphs against recent LSH indices
(which we did not adopt yet)

• Experiment with more challenging spaces
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Talk Recap

• Nearest Neighbor search can be useful in ML and NLP

• Non-metric spaces are important

• Our NMSLIB library has decent support for such spaces

• NMSLIB includes SW-graph, which is quite efficient

• That said, NMSLIB is still work in progress

• LSH may not always be the best search method

44/ 49 June 9, 2016



Thank you for attention!
Our code is on GitHub:

https://github.com/searchivarius/NonMetricSpaceLib
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